
	 	

	

	

Reference	number

ISO/IEC	14496‐12:2015(E)

©	ISO/IEC	2015

	

	

	

INTERNATIONAL	
STANDARD	

ISO/IEC
14496-12

Fifth	edition
2015‐12‐15

Information technology — Coding of audio-
visual objects —

Part	12:	
ISO base media file format

Technologies de l'information — Codage des objets audiovisuels —

Partie 12: Format ISO de base pour les fichiers médias
	

ISO/IEC 14496-12:2015(E)

	 COPYRIGHT PROTECTED DOCUMENT	

	
©			ISO/IEC	2015	

All	 rights	 reserved.	 Unless	 otherwise	 specified,	 no	 part	 of	 this	 publication	 may	 be	 reproduced	 or	 utilized	 in	 any	 form	 or	 by	 any	 means,	
electronic	or	mechanical,	including	photocopying	and	microfilm,	without	permission	in	writing	from	either	ISO	at	the	address	below	or	ISO's	
member	body	in	the	country	of	the	requester.	

ISO	copyright	office	
Case	postale	56		CH‐1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax		+	41	22	749	09	47	
E‐mail		copyright@iso.org	
Web		www.iso.org	

Published	in	Switzerland	
	

ii	 ©	ISO/IEC	2015	–	All	rights	reserved

	

	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved iii

	

Contents Page

1	 Scope .. 1	

2	 Normative references .. 1	

3	 Terms, definitions, and abbreviated terms .. 3	
3.1	 Terms and definitions .. 3	
3.2	 Abbreviated terms ... 5	

4	 Object-structured File Organization ... 6	
4.1	 File Structure ... 6	
4.2	 Object Structure .. 6	
4.3	 File Type Box ... 7	

5	 Design Considerations ... 8	
5.1	 Usage ... 8	
5.1.1	 Introduction ... 8	
5.1.2	 Interchange ... 8	
5.1.3	 Content Creation ... 9	
5.1.4	 Preparation for streaming .. 10	
5.1.5	 Local presentation ... 10	
5.1.6	 Streamed presentation ... 10	
5.2	 Design principles ... 11	

6	 ISO Base Media File organization .. 12	
6.1	 Presentation structure ... 12	
6.1.1	 File Structure ... 12	
6.1.2	 Object Structure .. 12	
6.1.3	 Meta Data and Media Data .. 12	
6.1.4	 Track Identifiers ... 12	
6.2	 Metadata Structure (Objects) .. 13	
6.2.1	 Box ... 13	
6.2.2	 Data Types and fields .. 13	
6.2.3	 Box Order .. 14	
6.2.4	 URIs as type indicators ... 17	
6.3	 Brand Identification .. 17	

7	 Streaming Support .. 18	
7.1	 Handling of Streaming Protocols ... 18	
7.2	 Protocol ‘hint’ tracks ... 18	
7.3	 Hint Track Format ... 19	

8	 Box Structures .. 20	
8.1	 File Structure and general boxes .. 20	
8.1.1	 Media Data Box .. 20	
8.1.2	 Free Space Box ... 21	

ISO/IEC 14496-12:2015(E)

iv	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.1.3	 Progressive Download Information Box ... 21	
8.2	 Movie Structure .. 22	
8.2.1	 Movie Box .. 22	
8.2.2	 Movie Header Box .. 22	
8.3	 Track Structure .. 24	
8.3.1	 Track Box .. 24	
8.3.2	 Track Header Box .. 24	
8.3.3	 Track Reference Box ... 26	
8.3.4	 Track Group Box .. 27	
8.4	 Track Media Structure ... 28	
8.4.1	 Media Box ... 28	
8.4.2	 Media Header Box .. 29	
8.4.3	 Handler Reference Box .. 29	
8.4.4	 Media Information Box .. 30	
8.4.5	 Media Information Header Boxes .. 30	
8.4.6	 Extended language tag ... 31	
8.5	 Sample Tables ... 32	
8.5.1	 Sample Table Box ... 32	
8.5.2	 Sample Description Box ... 32	
8.5.3	 Degradation Priority Box .. 34	
8.5.4	 Sample Scale Box .. 35	
8.6	 Track Time Structures ... 35	
8.6.1	 Time to Sample Boxes .. 35	
8.6.2	 Sync Sample Box ... 40	
8.6.3	 Shadow Sync Sample Box .. 40	
8.6.4	 Independent and Disposable Samples Box ... 41	
8.6.5	 Edit Box .. 43	
8.6.6	 Edit List Box ... 43	
8.7	 Track Data Layout Structures ... 45	
8.7.1	 Data Information Box ... 45	
8.7.2	 Data Reference Box ... 45	
8.7.3	 Sample Size Boxes .. 47	
8.7.4	 Sample To Chunk Box ... 48	
8.7.5	 Chunk Offset Box .. 49	
8.7.6	 Padding Bits Box .. 49	
8.7.7	 Sub-Sample Information Box ... 50	
8.7.8	 Sample Auxiliary Information Sizes Box ... 51	
8.7.9	 Sample Auxiliary Information Offsets Box ... 53	
8.8	 Movie Fragments ... 54	
8.8.1	 Movie Extends Box ... 54	
8.8.2	 Movie Extends Header Box ... 54	
8.8.3	 Track Extends Box ... 55	
8.8.4	 Movie Fragment Box ... 56	
8.8.5	 Movie Fragment Header Box ... 56	
8.8.6	 Track Fragment Box .. 57	
8.8.7	 Track Fragment Header Box .. 57	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved v

	

8.8.8	 Track Fragment Run Box ... 58	
8.8.9	 Movie Fragment Random Access Box .. 60	
8.8.10	 Track Fragment Random Access Box ... 60	
8.8.11	 Movie Fragment Random Access Offset Box .. 61	
8.8.12	 Track fragment decode time .. 62	
8.8.13	 Level Assignment Box .. 63	
8.8.14	 Sample Auxiliary Information in Movie Fragments .. 65	
8.8.15	 Track Extension Properties Box ... 65	
8.8.16	 Alternative Startup Sequence Properties Box ... 66	
8.8.17	 Metadata and user data in movie fragments ... 66	
8.9	 Sample Group Structures .. 67	
8.9.1	 Introduction ... 67	
8.9.2	 Sample to Group Box ... 68	
8.9.3	 Sample Group Description Box .. 69	
8.9.4	 Representation of group structures in Movie Fragments .. 70	
8.10	 User Data .. 71	
8.10.1	 User Data Box .. 71	
8.10.2	 Copyright Box .. 72	
8.10.3	 Track Selection Box ... 72	
8.10.4	 Track kind .. 74	
8.11	 Metadata Support .. 75	
8.11.1	 The Meta box ... 75	
8.11.2	 XML Boxes ... 76	
8.11.3	 The Item Location Box ... 77	
8.11.4	 Primary Item Box ... 80	
8.11.5	 Item Protection Box .. 80	
8.11.6	 Item Information Box ... 81	
8.11.7	 Additional Metadata Container Box .. 83	
8.11.8	 Metabox Relation Box .. 84	
8.11.9	 URL Forms for meta boxes .. 85	
8.11.10	 Static Metadata ... 85	
8.11.11	 Item Data Box ... 86	
8.11.12	 Item Reference Box ... 87	
8.11.13	 Auxiliary video metadata ... 88	
8.12	 Support for Protected Streams ... 88	
8.12.1	 Protection Scheme Information Box ... 89	
8.12.2	 Original Format Box .. 90	
8.12.3	 IPMPInfoBox .. 90	
8.12.4	 IPMP Control Box ... 90	
8.12.5	 Scheme Type Box ... 90	
8.12.6	 Scheme Information Box ... 91	
8.13	 File Delivery Format Support .. 91	
8.13.1	 Introduction ... 91	
8.13.2	 FD Item Information Box ... 92	
8.13.3	 File Partition Box ... 92	
8.13.4	 FEC Reservoir Box .. 94	

ISO/IEC 14496-12:2015(E)

vi	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.13.5	 FD Session Group Box .. 95	
8.13.6	 Group ID to Name Box .. 96	
8.13.7	 File Reservoir Box ... 96	
8.14	 Sub tracks .. 97	
8.14.1	 Introduction .. 97	
8.14.2	 Backward compatibility .. 97	
8.14.3	 Sub Track box ... 98	
8.14.4	 Sub Track Information box .. 98	
8.14.5	 Sub Track Definition box .. 100	
8.14.6	 Sub Track Sample Group box .. 100	
8.15	 Post-decoder requirements on media ... 100	
8.15.1	 General .. 100	
8.15.2	 Transformation .. 101	
8.15.3	 Restricted Scheme Information box ... 102	
8.15.4	 Scheme for stereoscopic video arrangements .. 102	
8.16	 Segments .. 104	
8.16.1	 Introduction .. 104	
8.16.2	 Segment Type Box ... 104	
8.16.3	 Segment Index Box .. 105	
8.16.4	 Subsegment Index Box .. 109	
8.16.5	 Producer Reference Time Box .. 111	
8.17	 Support for Incomplete Tracks .. 112	
8.17.1	 General .. 112	
8.17.2	 Transformation .. 113	
8.17.3	 Complete Track Information Box .. 114	

9	 Hint Track Formats .. 114	
9.1	 RTP and SRTP Hint Track Format ... 114	
9.1.1	 Introduction ... 114	
9.1.2	 Sample Description Format ... 115	
9.1.3	 Sample Format .. 117	
9.1.4	 SDP Information ... 119	
9.1.5	 Statistical Information ... 120	
9.2	 ALC/LCT and FLUTE Hint Track Format .. 121	
9.2.1	 Introduction ... 121	
9.2.2	 Design principles ... 122	
9.2.3	 Sample Description Format ... 123	
9.2.4	 Sample Format .. 124	
9.3	 MPEG-2 Transport Hint Track Format ... 127	
9.3.1	 Introduction ... 127	
9.3.2	 Design Principles ... 128	
9.3.3	 Sample Description Format ... 130	
9.3.4	 Sample Format .. 132	
9.3.5	 Protected MPEG 2 Transport Stream Hint Track ... 134	
9.4	 RTP, RTCP, SRTP and SRTCP Reception Hint Tracks .. 134	
9.4.1	 RTP Reception Hint Track .. 134	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved vii

	

9.4.2	 RTCP Reception Hint Track ... 138	
9.4.3	 SRTP Reception Hint Track .. 140	
9.4.4	 SRTCP Reception Hint Tracks ... 142	
9.4.5	 Protected RTP Reception Hint Track ... 143	
9.4.6	 Recording Procedure ... 143	
9.4.7	 Parsing Procedure .. 143	

10	 Sample Groups .. 143	
10.1	 Random Access Recovery Points .. 143	
10.2	 Rate Share Groups .. 144	
10.2.1	 Introduction .. 144	
10.2.2	 Rate Share Sample Group Entry .. 146	
10.2.3	 Relationship between tracks .. 147	
10.2.4	 Bitrate allocation .. 147	
10.3	 Alternative Startup Sequences .. 148	
10.3.4	 Examples .. 149	
10.4	 Random Access Point (RAP) Sample Grouping .. 151	
10.5	 Temporal level sample grouping .. 152	
10.6	 Stream access point sample group ... 152	

11	 Extensibility ... 153	
11.1	 Objects .. 153	
11.2	 Storage formats ... 154	
11.3	 Derived File formats .. 154	

12	 Media-specific definitions ... 155	
12.1	 Video media .. 155	
12.1.1	 Media handler .. 155	
12.1.2	 Video media header ... 155	
12.1.3	 Sample entry ... 156	
12.1.4	 Pixel Aspect Ratio and Clean Aperture ... 156	
12.1.5	 Colour information ... 158	
12.2	 Audio media ... 159	
12.2.1	 Media handler .. 159	
12.2.2	 Sound media header .. 159	
12.2.3	 Sample entry ... 160	
12.2.4	 Channel layout ... 162	
12.2.5	 Downmix Instructions ... 163	
12.2.6	 DRC Information ... 165	
12.2.7	 Audio stream loudness ... 165	
12.3	 Metadata media ... 167	
12.3.1	 Media handler .. 167	
12.3.2	 Media header .. 167	
12.3.3	 Sample entry ... 167	
12.4	 Hint media ... 169	
12.4.1	 Media handler .. 169	
12.4.2	 Hint media header .. 169	
12.4.3	 Sample entry ... 170	

ISO/IEC 14496-12:2015(E)

viii	 ©	ISO/IEC	2015	–	All	rights	reserved

	

12.5	 Text media ... 170	
12.5.1	 Media handler ... 170	
12.5.2	 Media header .. 170	
12.5.3	 Sample entry ... 170	
12.6	 Subtitle media .. 171	
12.6.1	 Media handler ... 171	
12.6.2	 Subtitle media header ... 171	
12.6.3	 Sample entry ... 171	
12.7	 Font media ... 172	
12.7.1	 Media handler ... 172	
12.7.2	 Media header .. 172	
12.7.3	 Sample entry ... 172	
12.8	 Transformed media ... 172	

Annex A	(informative)	 Overview and Introduction ... 173	
A.1	 Section Overview ... 173	
A.2	 Core Concepts ... 173	
A.3	 Physical structure of the media ... 174	
A.4	 Temporal structure of the media .. 174	
A.5	 Interleave ... 175	
A.6	 Composition .. 175	
A.7	 Random access ... 175	
A.8	 Fragmented movie files ... 176	

Annex B	(void) ... 178	

Annex C	(informative)	 Guidelines on deriving from this specification .. 179	
C.1	 Introduction .. 179	
C.2	 General Principles ... 179	
C.2.1	 General ... 179	
C.2.2	 Base layer operations ... 180	
C.3	 Boxes .. 180	
C.4	 Brand Identifiers ... 181	
C.4.1	 Introduction ... 181	
C.4.2	 Usage of the Brand ... 181	
C.4.3	 Introduction of a new brand .. 182	
C.4.4	 Player Guideline ... 182	
C.4.5	 Authoring Guideline .. 182	
C.4.6	 Example ... 183	
C.5	 Storage of new media types ... 183	
C.6	 Use of Template fields .. 183	
C.7	 Tracks .. 184	
C.7.1	 Data Location ... 184	
C.7.2	 Time .. 184	
C.7.3	 Media Types ... 185	
C.7.4	 Coding Types .. 185	
C.7.5	 Sub-sample information .. 185	
C.7.6	 Sample Dependency .. 185	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved ix

	

C.7.7	 Sample Groups .. 185	
C.7.8	 Track-level ... 186	
C.7.9	 Protection ... 186	
C.8	 Construction of fragmented movies ... 186	
C.9	 Meta-data ... 187	
C.10	 Registration .. 187	
C.11	 Guidelines on the use of sample groups, timed metadata tracks, and sample auxiliary
information .. 187	

Annex D	(informative)	 Registration Authority ... 190	
D.1	 Code points to be registered ... 190	
D.2	 Procedure for the request of an MPEG-4 registered identifier value .. 191	
D.3	 Responsibilities of the Registration Authority .. 191	
D.4	 Contact information for the Registration Authority .. 191	
D.5	 Responsibilities of Parties Requesting a RID ... 192	
D.6	 Appeal Procedure for Denied Applications .. 192	
D.7	 Registration Application Form .. 192	
D.7.1	 Contact Information of organization requesting a RID ... 192	
D.7.2	 Request for a specific RID .. 193	
D.7.3	 Short description of RID that is in use and date system was implemented 193	
D.7.4	 Statement of an intention to apply the assigned RID ... 193	
D.7.5	 Date of intended implementation of the RID .. 193	
D.7.6	 Authorized representative .. 193	
D.7.7	 For official use of the Registration Authority ... 194	

Annex E	(normative)		File format brands .. 195	
E.1	 Introduction .. 195	
E.2	 The ‘isom’ brand .. 196	
E.3	 The ‘avc1’ brand .. 197	
E.4	 The ‘iso2’ brand .. 197	
E.5	 The ‘mp71’ brand .. 198	
E.6	 The ‘iso3’ brand .. 198	
E.7	 The ‘iso4’ brand .. 199	
E.8	 The ‘iso5’ brand .. 199	
E.9	 The ‘iso6’ brand .. 200	
E.10	 The ‘iso7’ brand ... 200	
E.11	 The ‘iso8’ brand ... 201	
E.12	 The ‘iso9’ brand ... 201	

Annex F	(void) ... 202	

Annex G	(informative)		URI-labelled metadata forms ... 203	
G.1	 UUID-labelled metadata ... 203	
G.2	 ISO OID-labelled metadata .. 203	
G.3	 SMPTE-labelled metadata .. 204	

Annex H	(informative)		Processing of RTP streams and reception hint tracks 205	
H.1	 Introduction ... 205	
H.1.1	 Overview .. 205	

ISO/IEC 14496-12:2015(E)

x	 ©	ISO/IEC	2015	–	All	rights	reserved

	

H.1.2	 Structure ... 205	
H.1.3	 Terms and definitions ... 205	
H.2	 Synchronization of RTP streams ... 205	
H.3	 Recording of RTP streams ... 206	
H.3.1	 Introduction .. 206	
H.3.2	 Compensation for unequal starting for position of received RTP streams 209	
H.3.3	 Recording of SDP ... 210	
H.3.4	 Creation of a sample within an RTP reception hint track ... 210	
H.3.5	 Representation of RTP timestamps .. 211	
H.3.6	 Recording operations to facilitate inter-stream synchronization in playback 214	
H.3.7	 Representation of reception times ... 216	
H.3.8	 Creation of media samples ... 217	
H.3.9	 Creation of hint samples referring to media samples .. 217	
H.4	 Playing of recorded RTP streams .. 217	
H.4.1	 Introduction .. 217	
H.4.2	 Preparation for the playback .. 218	
H.4.3	 Decoding of a sample within an RTP reception hint track ... 218	
H.4.4	 Lip synchronization .. 219	
H.4.5	 Random access ... 220	
H.5	 Re-sending recorded RTP streams ... 221	
H.5.1	 Introduction .. 221	
H.5.2	 Re-sending RTP packets.. 222	
H.5.3	 RTCP Processing .. 223	

Annex I	(normative)		Stream Access Points ... 224	
I.1	 Introduction ... 224	
I.2	 SAP properties ... 224	
I.2.1	 General .. 224	
I.2.2	 SAP properties for layers ... 225	
I.3	 SAP types ... 226	

Annex J	(normative)		MIME Type Registration of Segments ... 227	
J.1	 Introduction ... 227	
J.2	 Registration .. 227	

Annex K : Segment Index Examples (informative) .. 228	
K.1	 Introduction .. 228	
K.2	 Examples .. 228	
K.2.1	 Simple one-level indexing .. 228	
K.2.2	 Hierarchical ... 228	
K.2.3	 Daisy-chain .. 229	
K.2.4	 Combination hierarchical and daisy-chain .. 230	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved xi

	

Foreword

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	governmental	and	non‐governmental,	 in	 liaison	with	 ISO	and	 IEC,	also	 take	part	 in	 the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.		In	particular	the	different	approval	criteria	needed	for	the	
different	 types	 of	 document	 should	 be	 noted.		 This	 document	 was	 drafted	 in	 accordance	 with	 the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).			

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	
rights.		Details	of	 any	patent	 rights	 identified	during	 the	development	of	 the	document	will	be	 in	 the	
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).		

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	
assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:		Foreword	‐	Supplementary	information	

The	committee	responsible	for	this	document	is	ISO/IEC	JTC	1,	Information technology,	SC	29,	Coding of
audio, picture, multimedia and hypermedia information.	

This	 fifth	 edition	 cancels	 and	 replaces	 the	 fourth	 edition	 (ISO/IEC	 14496‐12:2012),	 which	 has	 been	
technically	revised.	It	also	incorporates	the	Amendments	ISO/IEC	14496‐12:2012/Amd1:2013,	ISO/IEC	
14496‐12:2012/Amd2:2014,	 ISO/IEC	 14496‐12:2012/Amd3:2015	 and	 the	 Technical	 Corrigenda	
ISO/IEC	 14496‐12:2012/Cor1:2013,	 ISO/IEC	 14496‐12:2012/Cor2:2014	 and	 ISO/IEC	 14496‐
12:2012/Cor3:2015.	

ISO/IEC	14496	consists	of	the	following	parts,	under	the	general	title	Information technology — Coding
of audio-visual objects:	

 Part 1: Systems

 Part 2: Visual

 Part 3: Audio

ISO/IEC 14496-12:2015(E)

xii	 ©	ISO/IEC	2015	–	All	rights	reserved

	

 Part 4: Conformance testing

 Part 5: Reference software

 Part 6: Delivery Multimedia Integration Framework (DMIF)

 Part 7: Optimized reference software for coding of audio-visual objects

 Part 8: Carriage of ISO/IEC 14496 contents over IP networks

 Part 9: Reference hardware description

 Part 10: Advanced Video Coding

 Part 11: Scene description and application engine

 Part 12: ISO base media file format

 Part 13: Intellectual Property Management and Protection (IPMP) extensions

 Part 14: MP4 file format

 Part 15: Carriage of NAL unit structured video in the ISO Base Media File Format

 Part 16: Animation Framework eXtension (AFX)

 Part 17: Streaming text format

 Part 18: Font compression and streaming

 Part 19: Synthesized texture stream

 Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format
(SAF)

 Part 21: MPEG-J Graphics Framework eXtensions (GFX)

 Part 22: Open Font Format

 Part 23: Symbolic Music Representation

 Part 24: Audio and systems interaction

 Part 25: 3D Graphics Compression Model

 Part 26: Audio conformance

 Part 27: 3D Graphics conformance

 Part 28: Composite font representation

 Part 29: Web video coding

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved xiii

	

 Part 30: Timed text and other visual overlays in ISO base media file format

 Part 31: Video Coding for Browsers

ISO/IEC 14496-12:2015(E)

xiv	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Introduction

The	ISO	Base	Media	File	Format	is	designed	to	contain	timed	media	information	for	a	presentation	in	a	
flexible,	 extensible	 format	 that	 facilitates	 interchange,	 management,	 editing,	 and	 presentation	 of	 the	
media.	 This	 presentation	 may	 be	 ‘local’	 to	 the	 system	 containing	 the	 presentation,	 or	 may	 be	 via	 a	
network	or	other	stream	delivery	mechanism.	

The	file	structure	is	object‐oriented;	a	file	can	be	decomposed	into	constituent	objects	very	simply,	and	
the	structure	of	the	objects	inferred	directly	from	their	type.	

The	 file	 format	 is	 designed	 to	 be	 independent	 of	 any	 particular	 network	 protocol	 while	 enabling	
efficient	support	for	them	in	general.	

The	ISO	Base	Media	File	Format	is	a	base	format	for	media	file	formats.	

It	 is	 intended	 that	 the	 ISO	 Base	 Media	 File	 Format	 shall	 be	 jointly	 maintained	 by	 WG1	 and	WG11.	
Consequently,	 a	 subdivision	 of	 work	 created	 ISO/IEC	15444‐12	 and	 ISO/IEC	14496‐12	 in	 order	 to	
document	the	ISO	Base	Media	File	Format	and	to	facilitate	the	joint	maintenance.	

This	technically	identical	text	is	published	as	ISO/IEC	14496‐12	for	MPEG‐4,	and	as	ISO/IEC	15444‐12	
for	JPEG	2000,	and	reference	to	this	specification	should	be	made	accordingly.	The	recommendation	is	
to	reference	one,	for	example	ISO/IEC	14496‐12,	and	append	to	the	reference	a	parenthetical	comment	
identifying	the	other,	for	example	“(technically	identical	to	ISO/IEC	15444‐12)”.	

The	 International	 Organization	 for	 Standardization	 (ISO)	 and	 International	 Electrotechnical	
Commission	(IEC)	draw	attention	to	the	fact	that	it	is	claimed	that	compliance	with	this	document	may	
involve	the	use	of	patents.	

The	ISO	and	IEC	take	no	position	concerning	the	evidence,	validity	and	scope	of	this	patent	right.	

The	holder	of	this	patent	right	has	assured	the	ISO	and	IEC	that	he	is	willing	to	negotiate	licences	under	
reasonable	and	non‐discriminatory	terms	and	conditions	with	applicants	throughout	the	world.	In	this	
respect,	the	statement	of	the	holder	of	this	patent	right	is	registered	with	the	ISO	and	IEC.	Information	
may	be	obtained	from	the	companies	listed	in	Annex	B.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights	 other	 than	 those	 identified	 in	 Annex	 B.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	
identifying	any	or	all	such	patent	rights.	

ISO	 (www.iso.org/patents)	 and	 IEC	 (http://patents.iec.ch)	 maintain	 on‐line	 databases	 of	 patents	
relevant	 to	 their	 standards.	 Users	 are	 encouraged	 to	 consult	 the	 databases	 for	 the	most	 up	 to	 date	
information	concerning	patents.	

	

INTERNATIONAL STANDARD ISO/IEC 14496-12:2015(E)

	

©	ISO/IEC	2015	–	All	rights	reserved 1

	

Information technology — Coding of audio-visual objects —

Part	12:	
ISO base media file format

1 Scope

This	part	of	ISO/IEC	14496	specifies	the	ISO	base	media	file	format,	which	is	a	general	format	forming	
the	basis	 for	a	number	of	other	more	specific	 file	 formats.	This	 format	contains	 the	 timing,	structure,	
and	media	information	for	timed	sequences	of	media	data,	such	as	audio‐visual	presentations.	

This	 part	 of	 ISO/IEC	14496	 is	 applicable	 to	 MPEG‐4,	 but	 its	 technical	 content	 is	 identical	 to	 that	 of	
ISO/IEC	15444‐12,	which	is	applicable	to	JPEG	2000.	

2 Normative references

The	 following	 documents,	 in	whole	 or	 in	 part,	 are	 normatively	 referenced	 in	 this	 document	 and	 are	
indispensable	 for	 its	 application.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	 undated	
references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO	639‐2:1998,	Codes for the representation of names of languages — Part 2: Alpha-3 code	

ISO/IEC	9834‐8:2005,	 Information technology — Open Systems Interconnection — Procedures for the
operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components	

ISO/IEC	11578:1996,	Information technology — Open Systems Interconnection — Remote Procedure Call
(RPC)	

ISO/IEC	14496‐1:2010:	Information technology — Coding of audio-visual objects — Part 1: Systems	

ISO/IEC	14496‐10,	 Information technology — Coding of audio-visual objects — Part 10: Advanced Video
Coding	

ISO/IEC	14496‐14,	Information technology — Coding of audio-visual objects — Part 14: MP4 file format	

ISO/IEC	15444‐1,	Information technology — JPEG 2000 image coding system: Core coding system	

ISO/IEC	15444‐3,	Information technology — JPEG 2000 image coding system: Motion JPEG 2000	

ISO/IEC	15938‐1,	Information technology — Multimedia content description interface — Part 1: Systems	

ISO/IEC	23001‐1,	 Information technology — MPEG systems technologies — Part 1: Binary MPEG format
for XML	

ISO/IEC 14496-12:2015(E)

2	 ©	ISO/IEC	2015	–	All	rights	reserved

	

ISO/IEC	23002‐3,	 Information technology — MPEG video technologies — Part 3: Representation of
auxiliary video and supplemental information	

ISO/IEC	29199‐2:2012,	 Information technology — JPEG XR image coding system — Part 2: Image coding
specification	

ISO	15076‐1:2010,	 Image technology colour management — Architecture, profile format and data
structure — Part 1: Based on ICC.1:2010	

IETF	 RFC	 2045,	 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies,	FREED,	N.	and	BORENSTEIN,	N.,	November	1996	

IETF	RFC	2046,	 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,	 FREED,	 N.	 and	
BORENSTEIN,	N.,	November	1996	

IETF	RFC	3550,	RTP: A Transport Protocol for Real-Time Applications,	SCHULZRINNE,	H.	et	al.,	July	2003.	

IETF	RFC	3711,	The Secure Real-time Transport Protocol (SRTP),	BAUGHER,	M.	et	al.,	March	2004	

IETF	RFC	5052,	Forward Error Correction (FEC) Building Block,	WATSON,	M.	et	al.,	August	2007	

IETF	RFC	5905,	Network Time Protocol Version 4: Protocol and Algorithms Specification,	MILLS,	D.,	 et	 al,	
June	2010	

SMIL	1.0,	 Synchronized Multimedia Integration Language (SMIL) 1.0 Specification,	
<http://www.w3.org/TR/REC‐smil/>	

Rec.	ITU‐R	TF.460‐6,	Standard-frequency and time-signal emissions (Annex I for the definition of UTC.)

ISO/IEC	23003‐4,	Information technology – MPEG audio technologies – Part 4: Dynamic range control	

ITU‐R,	 Recommendation	 ITU‐R	 BS.1770‐3.	Algorithm to measure audio programme loudness and true-
peak audio level,	August	2012.	

ITU‐R,	 Recommendation	 ITU‐R	 BS.1771‐1.	Requirements for loudness and true-peak indicating meters,	
January	2012.	

EBU	R	128‐2014,	Loudness normalization and permitted maximum level of audio signals,	June	2014.	

EBU	EBU	–	Tech	3341,	Loudness Metering: EBU mode metering to supplement loudness normalization in
accordance with EBU R128	

EBU	EBU‐Tech	3342,	Loudness Range:�A measure to supplement loudness normalisation�in accordance
with EBU R 128,	Geneva,	August	2011	

ETSI	TS	101	154	V1.11.1,	Digital Video Broadcasting (DVB); Specification for the use of Video and Audio
Coding in Broadcasting Applications based on the MPEG-2 Transport Stream,	November	2012.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 3

	

ATSC	Document	A/85:2011,	ATSC Recommended Practice: Techniques for Establishing and Maintaining
Audio Loudness for Digital Television,	July	2011	

ATSC	Doc.	A/52:2012,	ATSC Standard: Digital Audio Compression (AC-3, E-AC-3).	

IETF	RFC	5646,	BCP	47,	Tags for Identifying Languages,	PHILLIPS,	A.,	et	al,	September	2009	

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

For	the	purposes	of	this	document,	the	following	terms	and	definitions	apply.	

3.1.1
box
object‐oriented	building	block	defined	by	a	unique	type	identifier	and	length	

Note	1	to	entry:	Called	‘atom’	in	some	specifications,	including	the	first	definition	of	MP4.	

3.1.2
chunk
contiguous	set	of	samples	for	one	track	

3.1.3
container box
box	whose	sole	purpose	is	to	contain	and	group	a	set	of	related	boxes	

Note	1	to	entry:	Container	boxes	are	normally	not	derived	from	‘fullbox’.	

3.1.4
hint track
special	track	which	does	not	contain	media	data,	but	instead	contains	instructions	for	packaging	one	or	
more	tracks	into	a	streaming	channel	

3.1.5
hinter
tool	that	is	run	on	a	file	containing	only	media,	to	add	one	or	more	hint	tracks	to	the	file	and	so	facilitate	
streaming	

3.1.6
ISO Base Media File
name	of	the	files	conforming	to	the	file	format	described	in	this	specification	

3.1.7
leaf subsegment
subsegment	that	does	not	contain	any	indexing	information	that	would	enable	its	further	division	into	
subsegments	

ISO/IEC 14496-12:2015(E)

4	 ©	ISO/IEC	2015	–	All	rights	reserved

	

3.1.8
media data box
box	which	can	hold	the	actual	media	data	for	a	presentation	(‘mdat’)	

3.1.9
movie box
container	box	whose	sub‐boxes	define	the	metadata	for	a	presentation	(‘moov’)	

3.1.10 	
movie-fragment relative addressing
signalling	 of	 offsets	 for	 media	 data	 in	 movie	 fragments	 that	 is	 relative	 to	 the	 start	 of	 those	 movie	
fragments,	 specifically	 setting	 the	 flags	base‐data‐offset‐present	 to	0	 and	default‐base‐is‐moof	 to	1	 in	
Track	Fragment	Header	Boxes	

Note	1	to	entry:	Setting	the	default‐base‐is‐moof	flag	to	1	is	only	relevant	for	movie	fragments	that	contain	more	than	one	track	
run	(either	in	the	same	or	several	tracks).	

3.1.11
presentation
one	or	more	motion	sequences,	possibly	combined	with	audio	

3.1.12
random access point (RAP)
sample	in	a	track	that	starts	at	the	ISAU	of	a	SAP	of	type	1	or	2	or	3	as	defined	in	Annex	I;	informally,	a	
sample,	 from	which	when	decoding	starts,	 the	sample	 itself	and	all	 samples	 following	 in	composition	
order	can	be	correctly	decoded	

3.1.13
random access recovery point
sample	 in	a	 track	with	presentation	 time	equal	 to	 the	TSAP	of	a	SAP	of	 type	4	as	defined	 in	Annex	 I;	
informally,	a	sample,	 that	can	be	correctly	decoded	after	having	decoded	a	number	of	samples	that	 is	
before	this	sample	in	decoding	order,	sometimes	known	as	gradual	decoding	refresh	

3.1.14
sample
all	the	data	associated	with	a	single	timestamp	

Note	1	to	entry:	No	two	samples	within	a	track	can	share	the	same	time‐stamp.	

Note	2	to	entry:	In	non‐hint	tracks,	a	sample	is,	for	example,	an	individual	frame	of	video,	a	series	of	video	frames	in	decoding	
order,	 or	 a	 compressed	 section	 of	 audio	 in	 decoding	 order;	 in	 hint	 tracks,	 a	 sample	 defines	 the	 formation	 of	 one	 or	more	
streaming	packets.	

3.1.15
sample description
structure	which	defines	and	describes	the	format	of	some	number	of	samples	in	a	track	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 5

	

3.1.16
sample table
packed	directory	for	the	timing	and	physical	layout	of	the	samples	in	a	track	

3.1.17
sync sample
sample	in	a	track	that	starts	at	the	ISAU	of	a	SAP	of	type	1	or	2	as	defined	in	Annex	I;	informally,	a	media	
sample	that	starts	a	new	independent	sequence	of	samples;	if	decoding	starts	at	the	sync	sample,	it	and	
succeeding	 samples	 in	decoding	 order	 can	 all	 be	 correctly	decoded,	 and	 the	 resulting	 set	 of	 decoded	
samples	forms	the	correct	presentation	of	the	media	starting	at	the	decoded	sample	that	has	the	earliest	
composition	 time;	 a	 media	 format	 may	 provide	 a	 more	 precise	 definition	 of	 a	 sync	 sample	 for	 that	
format	

3.1.18
segment
portion	of	an	 ISO	base	media	 file	 format	 file,	 consisting	of	either	 (a)	a	movie	box,	with	 its	 associated	
media	data	 (if	 any)	 and	other	associated	boxes	or	 (b)	one	or	more	movie	 fragment	boxes,	with	 their	
associated	media	data,	and	other	associated	boxes	

3.1.18
subsegment
time	interval	of	a	segment	formed	from	movie	fragment	boxes,	that	is	also	a	valid	segment	

3.1.19
track
timed	sequence	of	related	samples	(q.v.)	in	an	ISO	base	media	file	

Note	 1	 to	 entry:	 For	 media	 data,	 a	 track	 corresponds	 to	 a	 sequence	 of	 images	 or	 sampled	 audio;	 for	 hint	 tracks,	 a	 track	
corresponds	to	a	streaming	channel.	

3.2 Abbreviated terms

For	the	purposes	of	this	document,	the	following	abbreviated	terms	apply.	

ALC	 	Asynchronous	Layered	Coding	

FD	 	File	Delivery	

FDT 	File	Delivery	Table	

FEC	 	Forward	Error	Correction	

FLUTE	 	File	Delivery	over	Unidirectional	Transport	

IANA	 	Internet	Assigned	Numbers	Authority	

LCT	 	Layered	Coding	Transport	

MBMS	 	Multimedia	Broadcast/Multicast	Service	

ISO/IEC 14496-12:2015(E)

6	 ©	ISO/IEC	2015	–	All	rights	reserved

	

4 Object-structured File Organization

4.1 File Structure

Files	are	formed	as	a	series	of	objects,	called	boxes	in	this	specification.	All	data	is	contained	in	boxes;	
there	 is	 no	 other	 data	within	 the	 file.	 This	 includes	 any	 initial	 signature	 required	 by	 the	 specific	 file	
format.	

All	 object‐structured	 files	 conformant	 to	 this	 section	 of	 this	 specification	 (all	 Object‐Structured	 files)	
shall	contain	a	File	Type	Box.	

4.2 Object Structure

An	object	in	this	terminology	is	a	box.	

Boxes	start	with	a	header	which	gives	both	size	and	type.	The	header	permits	compact	or	extended	size	
(32	or	64	bits)	and	compact	or	extended	types	(32	bits	or	full	Universal	Unique	IDentifiers,	i.e.	UUIDs).	
The	standard	boxes	all	use	compact	types	(32‐bit)	and	most	boxes	will	use	the	compact	(32‐bit)	size.	
Typically	only	the	Media	Data	Box(es)	need	the	64‐bit	size.	

The	size	is	the	entire	size	of	the	box,	including	the	size	and	type	header,	fields,	and	all	contained	boxes.	
This	facilitates	general	parsing	of	the	file.	

The	 definitions	 of	 boxes	 are	 given	 in	 the	 syntax	 description	 language	 (SDL)	 defined	 in	MPEG‐4	 (see	
reference	 in	 Clause	2).	 Comments	 in	 the	 code	 fragments	 in	 this	 specification	 indicate	 informative	
material.	

The	 fields	 in	 the	objects	are	stored	with	 the	most	significant	byte	 first,	 commonly	known	as	network	
byte	 order	 or	 big‐endian	 format.	When	 fields	 smaller	 than	 a	 byte	 are	 defined,	 or	 fields	 span	 a	 byte	
boundary,	the	bits	are	assigned	from	the	most	significant	bits	 in	each	byte	to	the	least	significant.	For	
example,	a	field	of	two	bits	followed	by	a	field	of	six	bits	has	the	two	bits	in	the	high	order	bits	of	the	
byte.	

aligned(8) class Box (unsigned int(32) boxtype,
 optional unsigned int(8)[16] extended_type) {
 unsigned int(32) size;
 unsigned int(32) type = boxtype;
 if (size==1) {
 unsigned int(64) largesize;
 } else if (size==0) {
 // box extends to end of file
 }
 if (boxtype==‘uuid’) {
 unsigned int(8)[16] usertype = extended_type;
 }
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 7

	

The	semantics	of	these	two	fields	are:	

size	 is	 an	 integer	 that	 specifies	 the	 number	 of	 bytes	 in	 this	 box,	 including	 all	 its	 fields	 and	
contained	boxes;	if	size	is	1	then	the	actual	size	is	in	the	field	largesize;	if	size	is	0,	then	this	
box	is	the	last	one	in	the	file,	and	its	contents	extend	to	the	end	of	the	file	(normally	only	used	
for	a	Media	Data	Box)	

type	identifies	the	box	type;	standard	boxes	use	a	compact	type,	which	is	normally	four	printable	
characters,	to	permit	ease	of	identification,	and	is	shown	so	in	the	boxes	below.	User	extensions	
use	an	extended	type;	in	this	case,	the	type	field	is	set	to	‘uuid’.

Boxes	with	an	unrecognized	type	shall	be	ignored	and	skipped.	

Many	objects	also	contain	a	version	number	and	flags	field:	

aligned(8) class FullBox(unsigned int(32) boxtype, unsigned int(8) v, bit(24) f)
 extends Box(boxtype) {
 unsigned int(8) version = v;
 bit(24) flags = f;
}

The	semantics	of	these	two	fields	are:	

version	is	an	integer	that	specifies	the	version	of	this	format	of	the	box.	
flags	is	a	map	of	flags	

Boxes	with	an	unrecognized	version	shall	be	ignored	and	skipped.	

4.3 File Type Box

4.3.1 Definition

Box	Type:	 `ftyp’	
Container:	 File	
Mandatory:	 Yes	
Quantity:	 Exactly	one	(but	see	below)	

Files	written	to	this	version	of	this	specification	must	contain	a	file‐type	box.	For	compatibility	with	an	
earlier	version	of	this	specification,	files	may	be	conformant	to	this	specification	and	not	contain	a	file‐
type	 box.	 Files	 with	 no	 file‐type	 box	 should	 be	 read	 as	 if	 they	 contained	 an	 FTYP	 box	 with	
Major_brand='mp41', minor_version=0,	and	the	single	compatible	brand	'mp41'.	

A	media‐file	structured	to	this	part	of	this	specification	may	be	compatible	with	more	than	one	detailed	
specification,	and	it	is	therefore	not	always	possible	to	speak	of	a	single	‘type’	or	‘brand’	for	the	file.	This	
means	that	the	utility	of	the	file	name	extension	and	Multipurpose	Internet	Mail	Extension	(MIME)	type	
are	somewhat	reduced.	

This	box	must	be	placed	as	early	as	possible	 in	the	file	(e.g.	after	any	obligatory	signature,	but	before	
any	 significant	 variable‐size	boxes	 such	as	 a	Movie	Box,	Media	Data	Box,	 or	Free	Space).	 It	 identifies	
which	specification	is	the	‘best	use’	of	the	file,	and	a	minor	version	of	that	specification;	and	also	a	set	of	
other	 specifications	 to	which	 the	 file	 complies.	 Readers	 implementing	 this	 format	 should	 attempt	 to	
read	files	that	are	marked	as	compatible	with	any	of	the	specifications	that	the	reader	implements.	Any	
incompatible	change	in	a	specification	should	therefore	register	a	new	‘brand’	identifier	to	identify	files	
conformant	to	the	new	specification.	

ISO/IEC 14496-12:2015(E)

8	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	minor	version	is	informative	only.	It	does	not	appear	for	compatible‐brands,	and	must	not	be	used	
to	determine	 the	 conformance	of	 a	 file	 to	 a	 standard.	 It	may	allow	more	precise	 identification	of	 the	
major	specification,	for	inspection,	debugging,	or	improved	decoding.	

Files	would	normally	be	externally	identified	(e.g.	with	a	file	extension	or	mime	type)	that	identifies	the	
‘best	use’	(major	brand),	or	the	brand	that	the	author	believes	will	provide	the	greatest	compatibility.	

This	 section	 of	 this	 specification	 does	 not	 define	 any	 brands.	 However,	 see	 subclause	 6.3	 below	 for	
brands	 for	 files	conformant	 to	 the	whole	specification	and	not	 just	 this	section.	All	 file	 format	brands	
defined	in	this	specification	are	included	in	Annex	E	with	a	summary	of	which	features	they	require.	

4.3.2 Syntax

aligned(8) class FileTypeBox
 extends Box(‘ftyp’) {
 unsigned int(32) major_brand;
 unsigned int(32) minor_version;
 unsigned int(32) compatible_brands[]; // to end of the box
}

4.3.3 Semantics

This	box	identifies	the	specifications	to	which	this	file	complies.	

Each	brand	is	a	printable	four‐character	code,	registered	with	ISO,	that	identifies	a	precise	specification.	

major_brand –	is	a	brand	identifier	
minor_version –	is	an	informative	integer	for	the	minor	version	of	the	major	brand	
compatible_brands –	is	a	list,	to	the	end	of	the	box,	of	brands	

5 Design Considerations

5.1 Usage

5.1.1 Introduction

The	file	format	is	intended	to	serve	as	a	basis	for	a	number	of	operations.	In	these	various	roles,	it	may	
be	used	in	different	ways,	and	different	aspects	of	the	overall	design	exercised.	

5.1.2 Interchange

When	used	as	an	interchange	format,	the	files	would	normally	be	self‐contained	(not	referencing	media	
in	 other	 files),	 contain	 only	 the	 media	 data	 actually	 used	 in	 the	 presentation,	 and	 not	 contain	 any	
information	related	to	streaming.	This	will	result	 in	a	small,	protocol‐independent,	self‐contained	file,	
which	contains	the	core	media	data	and	the	information	needed	to	operate	on	it.	

The	following	diagram	gives	an	example	of	a	simple	interchange	file,	containing	two	streams.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 9

	

 ISO file

moov
 …other boxes

mdat

Interleaved, time-ordered, video
and audio framestrak (audio)

trak (video)

Figure 1 — Simple interchange file

5.1.3 Content Creation

During	content	creation,	a	number	of	areas	of	the	format	can	be	exercised	to	useful	effect,	particularly:	

 the	ability	to	store	each	elementary	stream	separately	(not	interleaved),	possibly	in	separate	
files.	

 the	ability	to	work	in	a	single	presentation	that	contains	media	data	and	other	streams	(e.g.	
editing	 the	 audio	 track	 in	 the	 uncompressed	 format,	 to	 align	 with	 an	 already‐
prepared	video	track).	

These	characteristics	mean	that	presentations	may	be	prepared,	edits	applied,	and	content	developed	
and	 integrated	 without	 either	 iteratively	 re‐writing	 the	 presentation	 on	 disc	 –	 which	 would	 be	
necessary	 if	 interleave	was	 required	 and	unused	data	had	 to	 be	deleted;	and	 also	without	 iteratively	
decoding	and	re‐encoding	the	data	–	which	would	be	necessary	if	the	data	must	be	stored	in	an	encoded	
state.	

In	the	following	diagram,	a	set	of	files	being	used	in	the	process	of	content	creation	is	shown.	

ISO/IEC 14496-12:2015(E)

10	 ©	ISO/IEC	2015	–	All	rights	reserved

	

media file
 video frames, possibly
 un-ordered with other
 unused data

ISO File

 …other boxes (inc. moov)

mdat
 Video and Audio frames
 possibly
 un-ordered with other
 unused data

ISO file

moov
 …other boxes

trak (audio)

trak (video)

Figure 2 — Content Creation File

5.1.4 Preparation for streaming

When	prepared	 for	streaming,	 the	 file	must	contain	 information	to	direct	 the	streaming	server	 in	 the	
process	of	sending	the	information.	In	addition,	it	is	helpful	if	these	instructions	and	the	media	data	are	
interleaved	so	that	excessive	seeking	can	be	avoided	when	serving	the	presentation.	It	is	also	important	
that	 the	 original	media	 data	 be	 retained	 unscathed,	 so	 that	 the	 files	may	 be	 verified,	 or	 re‐edited	 or	
otherwise	re‐used.	Finally,	 it	 is	helpful	 if	 a	single	 file	can	be	prepared	 for	more	 than	one	protocol,	 so	
differing	servers	may	use	it	over	disparate	protocols.	

5.1.5 Local presentation

‘Locally’	 viewing	 a	 presentation	 (i.e.	 directly	 from	 the	 file,	 not	 over	 a	 streamed	 interconnect)	 is	 an	
important	application;	it	is	used	when	a	presentation	is	distributed	(e.g.	on	CD	or	DVD	ROM),	during	the	
process	of	development,	and	when	verifying	the	content	on	streaming	servers.	Such	local	viewing	must	
be	supported,	with	full	random	access.	If	the	presentation	is	on	CD	or	DVD	ROM,	interleave	is	important	
as	seeking	may	be	slow.	

5.1.6 Streamed presentation

When	a	server	operates	from	the	file	to	make	a	stream,	the	resulting	stream	must	be	conformant	with	
the	specifications	for	the	protocol(s)	used,	and	should	contain	no	trace	of	the	file‐format	information	in	
the	file	itself.	The	server	needs	to	be	able	to	random	access	the	presentation.	It	can	be	useful	to	re‐use	
server	content	(e.g.	to	make	excerpts)	by	referencing	the	same	media	data	from	multiple	presentations;	
it	can	also	assist	streaming	if	the	media	data	can	be	on	read‐only	media	(e.g.	CD)	and	not	copied,	merely	
augmented,	when	prepared	for	streaming.	

The	following	diagram	shows	a	presentation	prepared	for	streaming	over	a	multiplexing	protocol,	only	
one	hint	track	is	required.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 11

	

ISO file

moov
 …other boxes

mdat

Interleaved, time-ordered, video
and audio frames, and hint
instructions

trak (video)

trak (audio)

trak (hint)

	

Figure 3 — Hinted Presentation for Streaming

5.2 Design principles

The	file	structure	is	object‐oriented;	a	file	can	be	decomposed	into	constituent	objects	very	simply,	and	
the	structure	of	the	objects	inferred	directly	from	their	type.	

Media‐data	 is	not	 ‘framed’	by	 the	 file	 format;	 the	 file	 format	declarations	 that	 give	 the	 size,	 type	and	
position	of	media	data	units	are	not	physically	contiguous	with	the	media	data.	This	makes	it	possible	to	
subset	the	media‐data,	and	to	use	it	in	its	natural	state,	without	requiring	it	to	be	copied	to	make	space	
for	framing.	The	metadata	is	used	to	describe	the	media	data	by	reference,	not	by	inclusion.	

Similarly	the	protocol	 information	for	a	particular	streaming	protocol	does	not	 frame	the	media	data;	
the	protocol	headers	are	not	physically	contiguous	with	the	media	data.	Instead,	the	media	data	can	be	
included	by	reference.	This	makes	it	possible	to	represent	media	data	in	its	natural	state,	not	favouring	
any	protocol.	It	also	makes	it	possible	for	the	same	set	of	media	data	to	serve	for	local	presentation,	and	
for	multiple	protocols.	

The	protocol	information	is	built	in	such	a	way	that	the	streaming	servers	need	to	know	only	about	the	
protocol	and	the	way	it	should	be	sent;	the	protocol	information	abstracts	knowledge	of	the	media	so	
that	the	servers	are,	to	a	large	extent,	media‐type	agnostic.	Similarly	the	media‐data,	stored	as	it	is	in	a	
protocol‐unaware	fashion,	enables	the	media	tools	to	be	protocol‐agnostic.	

The	 file	 format	does	not	 require	 that	 a	 single	presentation	be	 in	 a	 single	 file.	 This	 enables	both	 sub‐
setting	and	re‐use	of	content.	When	combined	with	the	non‐framing	approach,	it	also	makes	it	possible	
to	include	media	data	in	files	not	formatted	to	this	specification	(e.g.	 ‘raw’	files	containing	only	media	
data	and	no	declarative	information,	or	file	formats	already	in	use	in	the	media	or	computer	industries).	

The	file	format	is	based	on	a	common	set	of	designs	and	a	rich	set	of	possible	structures	and	usages.	The	
same	format	serves	all	usages;	translation	is	not	required.	However,	when	used	in	a	particular	way	(e.g.	
for	local	presentation),	the	file	may	need	structuring	in	certain	ways	for	optimal	behaviour	(e.g.	time‐
ordering	 of	 the	 data).	 No	 normative	 structuring	 rules	 are	 defined	 by	 this	 specification,	 unless	 a	
restricted	profile	is	used.	

ISO/IEC 14496-12:2015(E)

12	 ©	ISO/IEC	2015	–	All	rights	reserved

	

6 ISO Base Media File organization

6.1 Presentation structure

6.1.1 File Structure

A	 presentation	 may	 be	 contained	 in	 several	 files.	 One	 file	 contains	 the	 metadata	 for	 the	 whole	
presentation,	 and	 is	 formatted	 to	 this	 specification.	 This	 file	 may	 also	 contain	 all	 the	 media	 data,	
whereupon	the	presentation	is	self‐contained.	The	other	files,	if	used,	are	not	required	to	be	formatted	
to	this	specification;	they	are	used	to	contain	media	data,	and	may	also	contain	unused	media	data,	or	
other	information.	This	specification	concerns	the	structure	of	the	presentation	file	only.	The	format	of	
the	media‐data	 files	 is	constrained	by	 this	specification	only	 in	 that	 the	media‐data	 in	 the	media	 files	
must	be	capable	of	description	by	the	metadata	defined	here.	

These	 other	 files	may	 be	 ISO	 files,	 image	 files,	 or	 other	 formats.	 Only	 the	media	 data	 itself,	 such	 as	
JPEG	2000	images,	is	stored	in	these	other	files;	all	timing	and	framing	(position	and	size)	information	is	
in	the	ISO	base	media	file,	so	the	ancillary	files	are	essentially	free‐format.	

If	an	ISO	file	contains	hint	tracks,	the	media	tracks	that	reference	the	media	data	from	which	the	hints	
were	built	 shall	 remain	 in	 the	 file,	even	 if	 the	data	within	 them	 is	not	directly	referenced	by	 the	hint	
tracks;	after	deleting	all	hint	tracks,	the	entire	un‐hinted	presentation	shall	remain.	Note	that	the	media	
tracks	may,	however,	refer	to	external	files	for	their	media	data.	

Annex	A	provides	an	informative	introduction,	which	may	be	of	assistance	to	first‐time	readers.	

6.1.2 Object Structure

The	 file	 is	 structured	as	 a	 sequence	of	objects;	 some	of	 these	objects	may	 contain	other	objects.	 The	
sequence	of	objects	in	the	file	shall	contain	exactly	one	presentation	metadata	wrapper	(the	Movie	Box).	
It	is	usually	close	to	the	beginning	or	end	of	the	file,	to	permit	its	easy	location.	The	other	objects	found	
at	 this	 level	may	 be	 a	 File‐Type	 box,	 Free	 Space	 Boxes,	Movie	 Fragments,	Meta‐data,	 or	Media	 Data	
Boxes.	

6.1.3 Meta Data and Media Data

The	metadata	is	contained	within	the	metadata	wrapper	(the	Movie	Box);	the	media	data	is	contained	
either	 in	 the	 same	 file,	 within	Media	 Data	 Box(es),	 or	 in	 other	 files.	 The	media	 data	 is	 composed	 of	
images	 or	 audio	 data;	 the	media	 data	 objects,	 or	media	 data	 files,	 may	 contain	 other	 un‐referenced	
information.	

6.1.4 Track Identifiers

The	 track	 identifiers	used	 in	an	 ISO	 file	are	unique	within	 that	 file;	no	 two	 tracks	 shall	use	 the	 same	
identifier.	

The	next	track	identifier	value	stored	in	next_track_ID	in	the	Movie	Header	Box	generally	contains	
a	value	one	greater	than	the	largest	track	identifier	value	found	in	the	file.	This	enables	easy	generation	
of	a	track	identifier	under	most	circumstances.	However,	if	this	value	is	equal	to	ones	(32‐bit	unsigned	
maxint),	then	a	search	for	an	unused	track	identifier	is	needed	for	all	additions.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 13

	

6.2 Metadata Structure (Objects)

6.2.1 Box

Type	 fields	 not	 defined	 here	 are	 reserved.	 Private	 extensions	 shall	 be	 achieved	 through	 the	‘uuid’	
type.	In	addition,	the	following	types	are	not	and	will	not	be	used,	or	used	only	in	their	existing	sense,	in	
future	versions	of	 this	specification,	 to	avoid	conflict	with	existing	content	using	earlier	pre‐standard	
versions	of	this	format:	

clip, crgn, matt, kmat, pnot, ctab, load, imap;
these track reference types (as found in the reference_type of a Track Reference Box): tmcd,
chap, sync, scpt, ssrc.

A	number	of	 boxes	 contain	 index	 values	 into	 sequences	 in	 other	boxes.	These	 indexes	 start	with	 the	
value	1	(1	is	the	first	entry	in	the	sequence).	

6.2.2 Data Types and fields

In	a	number	of	boxes	in	this	specification,	there	are	two	variant	forms:	version	0	using	32‐bit	fields,	and	
version	1	using	64‐bit	sizes	for	those	same	fields.	In	general,	if	a	version	0	box	(32‐bit	field	sizes)	can	be	
used,	 it	 should	 be;	 version	 1	 boxes	 should	 be	 used	 only	when	 the	 64‐bit	 field	 sizes	 they	 permit,	 are	
required.	Values	 for	counters,	offsets,	 times,	durations	etc.	 in	 this	 format	do	not	 ‘wrap’	 to	0	when	the	
maximum	value	that	can	be	stored	in	their	field	is	reached;	appropriately	large	fields	must	be	used	for	
all	values.	

For	 convenience	during	 content	creation	 there	are	 creation	and	modification	 times	 stored	 in	 the	 file.	
These	 can	 be	 32‐bit	 or	 64‐bit	 numbers,	 counting	 seconds	 since	 midnight,	 Jan.	 1,	 1904,	 which	 is	 a	
convenient	date	for	leap‐year	calculations.	32	bits	are	sufficient	until	approximately	year	2040.	These	
times	shall	be	expressed	in	Universal	Time	Coordinated	(UTC),	and	therefore	may	need	adjustment	to	
local	time	if	displayed.	

Fixed‐point	 numbers	 are	 signed	 or	 unsigned	 values	 resulting	 from	 dividing	 an	 integer	 by	 an	
appropriate	power	of	2.	For	example,	a	30.2	fixed‐point	number	is	formed	by	dividing	a	32‐bit	integer	
by	4.	

Fields	 shown	 as	 “template”	 in	 the	 box	 descriptions	 are	 optional	 in	 the	 specifications	 that	 use	 this	
specification.	If	the	field	is	used	in	another	specification,	that	use	must	be	conformant	with	its	definition	
here,	 and	 the	 specification	 must	 define	 whether	 the	 use	 is	 optional	 or	 mandatory.	 Similarly,	 fields	
marked	“pre‐defined”	were	used	in	an	earlier	version	of	this	specification.	For	both	kinds	of	fields,	if	a	
field	of	that	kind	is	not	used	in	a	specification,	then	it	should	be	set	to	the	indicated	default	value.	If	the	
field	is	not	used	it	must	be	copied	un‐inspected	when	boxes	are	copied,	and	ignored	on	reading.	

Matrix	values	which	occur	in	the	headers	specify	a	transformation	of	video	images	for	presentation.	Not	
all	derived	specifications	use	matrices;	if	they	are	not	used,	they	shall	be	set	to	the	identity	matrix.	If	a	
matrix	is	used,	the	point	(p,q)	is	transformed	into	(p',	q')	using	the	matrix	as	follows:	

ISO/IEC 14496-12:2015(E)

14	 ©	ISO/IEC	2015	–	All	rights	reserved

	

(p q 1) * | a b u | = (m n z)
 | c d v |
 | x y w |

m = ap + cq + x; n = bp + dq + y; z = up + vq + w;

p' = m/z; q' = n/z

The	 coordinates	 {p,q}	 are	 on	 the	 decompressed	 frame,	 and	 {p’,	 q’}	 are	 at	 the	 rendering	 output.	
Therefore,	for	example,	the	matrix	{2,0,0,	0,2,0,	0,0,1}	exactly	doubles	the	pixel	dimension	of	an	image.	
The	 co‐ordinates	 transformed	 by	 the	 matrix	 are	 not	 normalized	 in	 any	 way,	 and	 represent	 actual	
sample	locations.	Therefore	{x,y}	can,	for	example,	be	considered	a	translation	vector	for	the	image.	

The	co‐ordinate	origin	is	located	at	the	upper	left	corner,	and	X	values	increase	to	the	right,	and	Y	values	
increase	downwards.	{p,q}	and	{p’,q’}	are	to	be	taken	as	absolute	pixel	 locations	relative	to	the	upper	
left	hand	corner	of	the	original	image	(after	scaling	to	the	size	determined	by	the	track	header's	width	
and	height)	and	the	transformed	(rendering)	surface,	respectively.	

Each	track	is	composed	using	its	matrix	as	specified	into	an	overall	image;	this	is	then	transformed	and	
composed	 according	 to	 the	 matrix	 at	 the	 movie	 level	 in	 the	 MovieHeaderBox.	 It	 is	 application‐
dependent	 whether	 the	 resulting	 image	 is	 ‘clipped’	 to	 eliminate	 pixels,	 which	 have	 no	 display,	 to	 a	
vertical	 rectangular	 region	within	 a	window,	 for	 example.	 So	 for	 example,	 if	 only	 one	 video	 track	 is	
displayed	 and	 it	 has	 a	 translation	 to	 {20,30},	 and	 a	 unity	 matrix	 is	 in	 the	 MovieHeaderBox,	 an	
application	may	choose	not	to	display	the	empty	“L”	shaped	region	between	the	image	and	the	origin.	

All	the	values	in	a	matrix	are	stored	as	16.16	fixed‐point	values,	except	for	u,	v	and	w,	which	are	stored	
as	2.30	fixed‐point	values.	

The	values	in	the	matrix	are	stored	in	the	order	{a,b,u,	c,d,v,	x,y,w}.	

6.2.3 Box Order

An	 overall	 view	 of	 the	 normal	 encapsulation	 structure	 is	 provided	 in	 the	 following	 informative	
Table	1	—	Box	types,	structure,	and	cross‐reference (Informative).	 In	the	event	of	a	conflict	between	
this	table	and	the	prose,	 the	prose	prevails.	The	order	of	boxes	within	 its	container	 is	not	necessarily	
indicated	in	the	table.	

The	table	shows	those	boxes	that	may	occur	at	the	top‐level	in	the	left‐most	column;	indentation	is	used	
to	show	possible	containment.	Thus,	 for	example,	a	Track	Header	Box	(tkhd)	 is	 found	 in	a	Track	Box	
(trak),	which	is	found	in	a	Movie	Box	(moov).	Not	all	boxes	need	to	be	used	in	all	files;	the	mandatory	
boxes	are	marked	with	an	asterisk	(*).	See	 the	description	of	 the	 individual	boxes	 for	a	discussion	of	
what	must	be	assumed	if	the	optional	boxes	are	not	present.	

User	data	objects	shall	be	placed	only	in	Movie	or	Track	Boxes,	and	objects	using	an	extended	type	may	
be	placed	in	a	wide	variety	of	containers,	not	just	the	top	level.	

In	order	to	improve	interoperability	and	utility	of	the	files,	the	following	rules	and	guidelines	shall	be	
followed	for	the	order	of	boxes:	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 15

	

1) The	 file	 type	 box	‘ftyp’	 shall	 occur	 before	 any	 variable‐length	 box	 (e.g.	movie,	 free	 space,	
media	data).	Only	a	fixed‐size	box	such	as	a	file	signature,	if	required,	may	precede	it.	

2) It	is	strongly	recommended	that	all	header	boxes	be	placed	first	in	their	container:	these	boxes	
are	the	Movie	Header,	Track	Header,	Media	Header,	and	the	specific	media	headers	inside	the	
Media	Information	Box	(e.g.	the	Video	Media	Header).	

3) Any	Movie	Fragment	Boxes	shall	be	in	sequence	order	(see	subclause	8.8.5).	

4) It	 is	 recommended	 that	 the	 boxes	 within	 the	 Sample	 Table	 Box	 be	 in	 the	 following	 order:	
Sample	Description,	Time	to	Sample,	Sample	to	Chunk,	Sample	Size,	Chunk	Offset.	

5) It	is	strongly	recommended	that	the	Track	Reference	Box	and	Edit	List	(if	any)	should	precede	
the	Media	Box,	and	the	Handler	Reference	Box	should	precede	the	Media	Information	Box,	and	
the	Data	Information	Box	should	precede	the	Sample	Table	Box.	

6) It	 is	recommended	 that	user	Data	Boxes	be	placed	 last	 in	their	container,	which	 is	either	the	
Movie	Box	or	Track	Box.	

7) It	is	recommended	that	the	Movie	Fragment	Random	Access	Box,	if	present,	be	last	in	the	file.	

8) It	 is	 recommended	 that	 the	 progressive	 download	 information	 box	 be	 placed	 as	 early	 as	
possible	in	files,	for	maximum	utility.	

Table 1 — Box types, structure, and cross-reference	(Informative)

Box types, structure, and cross-reference (Informative)
ftyp * 4.3 file type and compatibility
pdin 8.1.3 progressive download information
moov * 8.2.1 container for all the metadata
 mvhd * 8.2.2 movie header, overall declarations
 meta 8.11.1 metadata
 trak * 8.3.1 container for an individual track or stream
 tkhd * 8.3.2 track header, overall information about the track
 tref 8.3.3 track reference container
 trgr 8.3.4 track grouping indication
 edts 8.6.4 edit list container
 elst 8.6.6 an edit list
 meta 8.11.1 metadata
 mdia * 8.4 container for the media information in a track
 mdhd * 8.4.2 media header, overall information about the media
 hdlr * 8.4.3 handler, declares the media (handler) type
 elng 8.4.6 extended language tag
 minf * 8.4.4 media information container

 vmhd
12.1.2 video media header, overall information (video

track only)

 smhd
12.2.2 sound media header, overall information (sound

track only)

 hmhd
12.4.2 hint media header, overall information (hint track

only)

 sthd
12.6.2 subtitle media header, overall information (subtitle

track only)

 nmhd
8.4.5.2 Null media header, overall information (some

tracks only)
 dinf * 8.7.1 data information box, container

ISO/IEC 14496-12:2015(E)

16	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Box types, structure, and cross-reference (Informative)

 dref *
8.7.2 data reference box, declares source(s) of media

data in track

 stbl *
8.5.1 sample table box, container for the time/space

map

 stsd *
8.5.2 sample descriptions (codec types, initialization

etc.)
 stts * 8.6.1.2 (decoding) time-to-sample
 ctts 8.6.1.3 (composition) time to sample
 cslg 8.6.1.4 composition to decode timeline mapping
 stsc * 8.7.4 sample-to-chunk, partial data-offset information
 stsz 8.7.3.2 sample sizes (framing)
 stz2 8.7.3.3 compact sample sizes (framing)
 stco * 8.7.5 chunk offset, partial data-offset information
 co64 8.7.5 64-bit chunk offset
 stss 8.6.2 sync sample table
 stsh 8.6.3 shadow sync sample table
 padb 8.7.6 sample padding bits
 stdp 8.7.6 sample degradation priority
 sdtp 8.6.4 independent and disposable samples
 sbgp 8.9.2 sample-to-group
 sgpd 8.9.3 sample group description
 subs 8.7.7 sub-sample information
 saiz 8.7.8 sample auxiliary information sizes
 saio 8.7.9 sample auxiliary information offsets
 udta 8.10.1 user-data
 mvex 8.8.1 movie extends box
 mehd 8.8.2 movie extends header box
 trex * 8.8.3 track extends defaults
 leva 8.8.13 level assignment

moof 8.8.4 movie fragment
 mfhd * 8.8.5 movie fragment header
 meta 8.11.1 metadata
 traf 8.8.6 track fragment
 tfhd * 8.8.7 track fragment header
 trun 8.8.8 track fragment run
 sbgp 8.9.2 sample-to-group
 sgpd 8.9.3 sample group description
 subs 8.7.7 sub-sample information
 saiz 8.7.8 sample auxiliary information sizes
 saio 8.7.9 sample auxiliary information offsets
 tfdt 8.8.12 track fragment decode time
 meta 8.11.1 metadata

mfra 8.8.9 movie fragment random access
 tfra 8.8.10 track fragment random access
 mfro * 8.8.11 movie fragment random access offset

mdat 8.2.2 media data container
free 8.1.2 free space
skip 8.1.2 free space
 udta 8.10.1 user-data
 cprt 8.10.2 copyright etc.
 tsel 8.10.3 track selection box
 strk 8.14.3 sub track box
 stri 8.14.4 sub track information box
 strd 8.14.5 sub track definition box

meta 8.11.1 metadata
 hdlr * 8.4.3 handler, declares the metadata (handler) type
 dinf 8.7.1 data information box, container

 dref
8.7.2 data reference box, declares source(s) of

metadata items

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 17

	

Box types, structure, and cross-reference (Informative)
 iloc 8.11.3 item location
 ipro 8.11.5 item protection
 sinf 8.12.1 protection scheme information box
 frma 8.12.2 original format box
 schm 8.12.5 scheme type box
 schi 8.12.6 scheme information box
 iinf 8.11.6 item information
 xml 8.11.2 XML container
 bxml 8.11.2 binary XML container
 pitm 8.11.4 primary item reference
 fiin 8.13.2 file delivery item information
 paen 8.13.2 partition entry
 fire 8.13.7 file reservoir
 fpar 8.13.3 file partition
 fecr 8.13.4 FEC reservoir
 segr 8.13.5 file delivery session group
 gitn 8.13.6 group id to name
 idat 8.11.11 item data
 iref 8.11.12 item reference

meco 8.11.7 additional metadata container
 mere 8.11.8 metabox relation
 meta 8.11.1 metadata

styp 8.16.2 segment type
sidx 8.16.3 segment index
ssix 8.16.4 subsegment index
prft 8.16.5 producer reference time

	

6.2.4 URIs as type indicators

When	URIs	are	used	as	a	type	indicator	(e.g.	in	a	sample	entry	or	for	un‐timed	meta‐data),	the	URI	must	
be	absolute,	not	relative	and	the	format	and	meaning	of	the	data	must	be	defined	by	the	URI	in	question.	
This	identification	may	be	hierarchical,	in	that	an	initial	sub‐string	of	the	URI	might	identify	the	overall	
nature	 or	 family	 of	 the	 data	 (e.g.	 urn:oid:	 identifies	 that	 the	metadata	 is	 labelled	 by	 an	 ISO‐standard	
object	identifier).	

The	URI	should	be,	but	is	not	required	to	be,	de‐referencable.	It	may	be	string	compared	by	readers	with	
the	set	of	URI	types	it	knows	and	recognizes.	URIs	provide	a	 large	non‐colliding	non‐registered	space	
for	type	identifiers.	

If	the	URI	contains	a	domain	name	(e.g.	it	is	a	URL),	then	it	should	also	contain	a	month‐date	in	the	form	
mmyyyy.	That	date	must	be	near	the	time	of	the	definition	of	the	extension,	and	it	must	be	true	that	the	
URI	 was	 defined	 in	 a	 way	 authorized	 by	 the	 owner	 of	 the	 domain	 name	 at	 that	 date.	 (This	 avoids	
problems	when	domain	names	change	ownership).	

6.3 Brand Identification

The	definitions	of	the	brands	that	that	apply	to	the	file	format	are	found	in	Annex	E.	

ISO/IEC 14496-12:2015(E)

18	 ©	ISO/IEC	2015	–	All	rights	reserved

	

7 Streaming Support

7.1 Handling of Streaming Protocols

The	file	format	supports	streaming	of	media	data	over	a	network	as	well	as	local	playback.	The	process	
of	sending	protocol	data	units	 is	 time‐based,	 just	 like	 the	display	of	 time‐based	data,	and	 is	 therefore	
suitably	 described	 by	 a	 time‐based	 format.	 A	 file	 or	 ‘movie’	 that	 supports	 streaming	 includes	
information	about	the	data	units	to	stream.	This	information	is	included	in	additional	tracks	of	the	file	
called	“hint”	 tracks.	Hint	 tracks	may	also	be	used	 to	record	a	 stream;	 these	are	called	Reception	Hint	
Tracks,	to	differentiate	them	from	plain	(or	server,	or	transmission)	hint	tracks.	

Transmission	or	server	hint	tracks	contain	instructions	to	assist	a	streaming	server	in	the	formation	of	
packets	 for	 transmission.	These	 instructions	may	 contain	 immediate	data	 for	 the	 server	 to	 send	 (e.g.	
header	information)	or	reference	segments	of	the	media	data.	These	instructions	are	encoded	in	the	file	
in	the	same	way	that	editing	or	presentation	information	is	encoded	in	a	file	for	local	playback.	Instead	
of	editing	or	presentation	information,	information	is	provided	which	allows	a	server	to	packetize	the	
media	data	in	a	manner	suitable	for	streaming	using	a	specific	network	transport.	

The	same	media	data	is	used	in	a	file	that	contains	hints,	whether	it	is	for	local	playback,	or	streaming	
over	 a	 number	 of	 different	 protocols.	 Separate	 ‘hint’	 tracks	 for	 different	 protocols	 may	 be	 included	
within	 the	 same	 file	 and	 the	media	 will	 play	 over	 all	 such	 protocols	without	making	 any	 additional	
copies	of	the	media	itself.	In	addition,	existing	media	can	be	easily	made	streamable	by	the	addition	of	
appropriate	hint	tracks	for	specific	protocols.	The	media	data	itself	need	not	be	recast	or	reformatted	in	
any	way.	

This	approach	to	streaming	and	recording	is	more	space	efficient	than	an	approach	that	requires	that	
the	media	 information	 be	 partitioned	 into	 the	 actual	 data	 units	 that	 will	 be	 transmitted	 for	 a	 given	
transport	and	media	format.	Under	such	an	approach,	local	playback	requires	either	re‐assembling	the	
media	 from	 the	 packets,	 or	 having	 two	 copies	 of	 the	 media	 —	 one	 for	 local	 playback	 and	 one	 for	
streaming.	 Similarly,	 streaming	 such	 media	 over	 multiple	 protocols	 using	 this	 approach	 requires	
multiple	copies	of	the	media	data	for	each	transport.	This	is	inefficient	with	space,	unless	the	media	data	
has	 been	 heavily	 transformed	 for	 streaming	 (e.g.	 by	 the	 application	 of	 error‐correcting	 coding	
techniques,	or	by	encryption).	

Reception	hint	tracks	may	be	used	when	one	or	more	packet	streams	of	data	are	recorded.	Reception	
hint	 tracks	 indicate	 the	 order,	 reception	 timing,	 and	 contents	 of	 the	 received	 packets	 among	 other	
things.	

NOTE	 Players	may	reproduce	the	packet	stream	that	was	received	based	on	the	reception	hint	tracks	and	process	
the	reproduced	packet	stream	as	if	it	was	newly	received.	

7.2 Protocol ‘hint’ tracks

Support	for	streaming	is	based	upon	the	following	three	design	parameters:	

 The	media	data	is	represented	as	a	set	of	network‐independent	standard	tracks,	which	may	
be	played,	edited,	and	so	on,	as	normal;	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 19

	

 There	 is	 a	 common	 declaration	 and	 base	 structure	 for	 hint	 tracks;	 this	 common	 format	 is	
protocol	 independent,	 but	 contains	 the	 declarations	 of	 which	 protocol(s)	 are	
described	in	the	hint	track(s);	

 There	 is	 a	 specific	 design	 of	 the	 hint	 tracks	 for	 each	protocol	 that	may	be	 transmitted;	 all	
these	designs	use	the	same	basic	structure.	For	example,	there	may	be	designs	for	
RTP	(for	the	Internet)	and	MPEG‐2	transport	(for	broadcast),	or	for	new	standard	
or	vendor‐specific	protocols.	

The	resulting	streams,	sent	by	the	servers	under	the	direction	of	the	server	hint	tracks	or	reconstructed	
from	the	reception	hint	tracks,	need	contain	no	trace	of	file‐specific	information.	This	design	does	not	
require	 that	 the	 file	 structures	 or	 declaration	 style,	 be	 used	 either	 in	 the	 data	 on	 the	wire	 or	 in	 the	
decoding	 station.	 For	 example,	 a	 file	 using	 ITU‐T	 H.261	 video	 and	 DVI	 audio,	 streamed	 under	 RTP,	
results	in	a	packet	stream	that	is	fully	compliant	with	the	IETF	specifications	for	packing	those	codings	
into	RTP.	

7.3 Hint Track Format

Hint	 tracks	 are	 used	 to	 describe	 elementary	 stream	 data	 in	 the	 file.	 Each	 protocol	 or	 each	 family	 of	
related	protocols	has	 its	own	hint	 track	 format.	A	server	hint	 track	 format	and	a	reception	hint	 track	
format	for	the	same	protocol	are	distinguishable	from	the	associated	four‐character	code	of	the	sample	
description	entry.	In	other	words,	a	different	four‐character	code	is	used	for	a	server	hint	track	and	a	
reception	hint	track	of	the	same	protocol.	The	syntax	of	the	server	hint	track	format	and	the	reception	
hint	track	format	for	the	same	protocol	should	be	the	same	or	compatible	so	that	a	reception	hint	track	
can	 be	 used	 for	 re‐sending	 of	 the	 stream	 provided	 that	 the	 potential	 degradations	 of	 the	 received	
streams	are	 handled	 appropriately.	Most	protocols	will	 need	only	one	 sample	description	 format	 for	
each	track.	

Servers	find	their	hint	tracks	by	first	finding	all	hint	tracks,	and	then	looking	within	that	set	for	server	
hint	tracks	using	their	protocol	(sample	description	format).	If	there	are	choices	at	this	point,	then	the	
server	chooses	on	the	basis	of	preferred	protocol	or	by	comparing	features	in	the	hint	track	header	or	
other	protocol‐specific	information	in	the	sample	descriptions.	Particularly	in	the	absence	of	server	hint	
tracks,	 servers	may	 also	 use	 reception	 hint	 tracks	 of	 their	 protocol.	However,	 servers	 should	 handle	
potential	degradations	of	the	received	stream	described	by	the	used	reception	hint	track	appropriately.	

Tracks	having	the	track_in_movie	 flag	set	are	candidates	 for	playback,	regardless	of	whether	they	are	
media	tracks	or	reception	hint	tracks.	

Hint	tracks	construct	streams	by	pulling	data	out	of	other	tracks	by	reference.	These	other	tracks	may	
be	hint	tracks	or	elementary	stream	tracks.	The	exact	form	of	these	pointers	is	defined	by	the	sample	
format	for	the	protocol,	but	in	general	they	consist	of	four	pieces	of	information:	a	track	reference	index,	
a	sample	number,	an	offset,	and	a	length.	Some	of	these	may	be	implicit	for	a	particular	protocol.	These	
‘pointers’	always	point	 to	 the	actual	source	of	 the	data.	 If	a	hint	 track	 is	built	 ‘on	top’	of	another	hint	
track,	 then	 the	 second	hint	 track	must	have	direct	 references	 to	 the	media	 track(s)	 used	by	 the	 first	
where	data	from	those	media	tracks	is	placed	in	the	stream.	

All	hint	tracks	use	a	common	set	of	declarations	and	structures.	

ISO/IEC 14496-12:2015(E)

20	 ©	ISO/IEC	2015	–	All	rights	reserved

	

 Hint	tracks	are	linked	to	the	elementary	stream	tracks	they	carry,	by	track	references	of	type	
‘hint’	

 They	use	a	handler‐type	of	‘hint’	in	the	Handler	Reference	Box	

 They	use	a	Hint	Media	Header	Box	

 They	use	a	hint	sample	entry	in	the	sample	description,	with	a	name	and	format	unique	to	the	
protocol	they	represent.	

Server	 hint	 tracks	 are	 usually	 marked	 as	 disabled	 for	 local	 playback,	 with	 their	 track	 header	
track_in_movie	and	track_in_preview flags	set	to	0.	

Hint	 tracks	may	 be	 created	 by	 an	 authoring	 tool,	 or	may	 be	 added	 to	 an	 existing	 presentation	 by	 a	
hinting	 tool.	 Such	 a	 tool	 serves	 as	 a	 ‘bridge’	 between	 the	media	 and	 the	 protocol,	 since	 it	 intimately	
understands	both.	This	permits	authoring	tools	to	understand	the	media	format,	but	not	protocols,	and	
for	servers	to	understand	protocols	(and	their	hint	tracks)	but	not	the	details	of	media	data.	

Hint	tracks	do	not	use	separate	composition	times;	the	‘ctts’	table	is	not	present	in	hint	tracks.	The	
process	of	hinting	computes	transmission	times	correctly	as	the	decoding	time.	

NOTE	1:	Servers	using	reception	hint	tracks	as	hints	for	sending	of	the	received	streams	should	handle	the	potential	
degradations	of	 the	received	streams,	such	as	 transmission	delay	 jitter	and	packet	 losses,	gracefully	and	
ensure	 that	 the	 constraints	 of	 the	 protocols	 and	 contained	 data	 formats	 are	 obeyed	 regardless	 of	 the	
potential	degradations	of	the	received	streams.	

NOTE	2:	Conversion	of	received	streams	to	media	tracks	allows	existing	players	compliant	with	earlier	versions	of	the	
ISO	base	media	file	format	to	process	recorded	files	as	long	as	the	media	formats	are	supported.	However,	
most	media	coding	standards	only	specify	the	decoding	of	error‐free	streams,	and	consequently	it	should	
be	ensured	that	the	content	 in	media	tracks	can	be	correctly	decoded.	Players	may	utilize	reception	hint	
tracks	 for	 handling	 of	 degradations	 caused	 by	 the	 transmission,	 i.e.,	 content	 that	 may	 not	 be	 correctly	
decoded	is	located	only	within	reception	hint	tracks.	The	need	for	having	a	duplicate	of	the	correct	media	
samples	in	both	a	media	track	and	a	reception	hint	track	can	be	avoided	by	including	data	from	the	media	
track	by	reference	into	the	reception	hint	track.	

8 Box Structures

8.1 File Structure and general boxes

8.1.1 Media Data Box

8.1.1.1 Definition

Box	Type:		 ‘mdat’	
Container:	 File	
Mandatory:	No	
Quantity:	 Zero	or	more	

This	box	contains	the	media	data.	In	video	tracks,	this	box	would	contain	video	frames.	A	presentation	
may	contain	zero	or	more	Media	Data	Boxes.	The	actual	media	data	follows	the	type	field;	its	structure	
is	described	by	the	metadata	(see	particularly	the	sample	table,	subclause	8.5,	and	the	item	location	box,	
subclause	8.11.3).	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 21

	

In	large	presentations,	it	may	be	desirable	to	have	more	data	in	this	box	than	a	32‐bit	size	would	permit.	
In	this	case,	the	large	variant	of	the	size	field,	above	in	subclause	4.2,	is	used.	

There	may	be	any	number	of	these	boxes	in	the	file	(including	zero,	if	all	the	media	data	is	in	other	files).	
The	metadata	refers	to	media	data	by	its	absolute	offset	within	the	file	(see	subclause	8.7.5,	the	Chunk	
Offset	Box);	so	Media	Data	Box	headers	and	free	space	may	easily	be	skipped,	and	files	without	any	box	
structure	may	also	be	referenced	and	used.	

8.1.1.2 Syntax

aligned(8) class MediaDataBox extends Box(‘mdat’) {
 bit(8) data[];
}

8.1.1.3 Semantics

data	is	the	contained	media	data	

8.1.2 Free Space Box

8.1.2.1 Definition

Box	Types:	 ‘free’,	‘skip’	
Container:	 File	or	other	box	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	 contents	 of	 a	 free‐space	 box	 are	 irrelevant	 and	may	 be	 ignored,	 or	 the	 object	 deleted,	 without	
affecting	 the	presentation.	 (Care	should	be	exercised	when	deleting	 the	object,	as	 this	may	 invalidate	
the	offsets	used	in	the	sample	table,	unless	this	object	is	after	all	the	media	data).	

8.1.2.2 Syntax

aligned(8) class FreeSpaceBox extends Box(free_type) {
 unsigned int(8) data[];
}

8.1.2.3 Semantics

free_type	may	be	‘free’	or	‘skip’.	

8.1.3 Progressive Download Information Box

8.1.3.1 Definition

Box	Types:	 ‘pdin’	
Container:	 File	
Mandatory:	 No	
Quantity:	 Zero	or	One	

The	 Progressive	 download	 information	 box	 aids	 the	 progressive	 download	 of	 an	 ISO	 file.	 The	 box	
contains	pairs	 of	 numbers	 (to	 the	 end	of	 the	box)	 specifying	 combinations	of	 effective	 file	 download	
bitrate	in	units	of	bytes/sec	and	a	suggested	initial	playback	delay	in	units	of	milliseconds.	

ISO/IEC 14496-12:2015(E)

22	 ©	ISO/IEC	2015	–	All	rights	reserved

	

A	 receiving	 party	 can	 estimate	 the	 download	 rate	 it	 is	 experiencing,	 and	 from	 that	 obtain	 an	 upper	
estimate	for	a	suitable	initial	delay	by	linear	interpolation	between	pairs,	or	by	extrapolation	from	the	
first	or	last	entry.	

It	is	recommended	that	the	progressive	download	information	box	be	placed	as	early	as	possible	in	files,	
for	maximum	utility.	

8.1.3.2 Syntax

aligned(8) class ProgressiveDownloadInfoBox
 extends FullBox(‘pdin’, version = 0, 0) {
 for (i=0; ; i++) { // to end of box
 unsigned int(32) rate;
 unsigned int(32) initial_delay;
 }
}

8.1.3.3 Semantics

rate	is	a	download	rate	expressed	in	bytes/second	
initial_delay	 is	 the	 suggested	 delay	 to	 use	 when	 playing	 the	 file,	 such	 that	 if	 download	

continues	at	 the	given	rate,	all	data	within	 the	 file	will	arrive	 in	 time	 for	 its	use	and	playback	
should	not	need	to	stall.	

8.2 Movie Structure

8.2.1 Movie Box

8.2.1.1 Definition

Box	Type:	 ‘moov’	
Container:	 File	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	metadata	for	a	presentation	is	stored	in	the	single	Movie	Box	which	occurs	at	the	top‐level	of	a	file.	
Normally	this	box	is	close	to	the	beginning	or	end	of	the	file,	though	this	is	not	required.	

8.2.1.2 Syntax

aligned(8) class MovieBox extends Box(‘moov’){
}

8.2.2 Movie Header Box

8.2.2.1 Definition

Box	Type:		 ‘mvhd’	
Container:	 Movie	Box	(‘moov’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

This	 box	 defines	 overall	 information	 which	 is	 media‐independent,	 and	 relevant	 to	 the	 entire	
presentation	considered	as	a	whole.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 23

	

8.2.2.2 Syntax

aligned(8) class MovieHeaderBox extends FullBox(‘mvhd’, version, 0) {
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) timescale;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) timescale;
 unsigned int(32) duration;
 }
 template int(32) rate = 0x00010000; // typically 1.0
 template int(16) volume = 0x0100; // typically, full volume
 const bit(16) reserved = 0;
 const unsigned int(32)[2] reserved = 0;
 template int(32)[9] matrix =
 { 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
 // Unity matrix
 bit(32)[6] pre_defined = 0;
 unsigned int(32) next_track_ID;
}

8.2.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1	in	this	specification)	
creation_time is	 an	 integer	 that	 declares	 the	 creation	 time	 of	 the	 presentation	 (in	 seconds	

since	midnight,	Jan.	1,	1904,	in	UTC	time)	
modification_time is	 an	 integer	 that	 declares	 the	 most	 recent	 time	 the	 presentation	 was	

modified	(in	seconds	since	midnight,	Jan.	1,	1904,	in	UTC	time)	
timescale is	 an	 integer	 that	 specifies	 the	 time‐scale	 for	 the	 entire	 presentation;	 this	 is	 the	

number	 of	 time	 units	 that	 pass	 in	 one	 second.	 For	 example,	 a	 time	 coordinate	 system	 that	
measures	time	in	sixtieths	of	a	second	has	a	time	scale	of	60.	

duration	 is	an	integer	that	declares	length	of	the	presentation	(in	the	indicated	timescale).	This	
property	 is	 derived	 from	 the	 presentation’s	 tracks:	 the	 value	 of	 this	 field	 corresponds	 to	 the	
duration	 of	 the	 longest	 track	 in	 the	 presentation.	 If	 the	 duration	 cannot	 be	 determined	 then	
duration	is	set	to	all	1s.	

rate is	a	fixed	point	16.16	number	that	indicates	the	preferred	rate	to	play	the	presentation;	1.0	
(0x00010000)	is	normal	forward	playback	

volume is	a	fixed	point	8.8	number	that	indicates	the	preferred	playback	volume.	1.0	(0x0100)	is	
full	volume.	

matrix provides	a	transformation	matrix	for	the	video;	(u,v,w)	are	restricted	here	to	(0,0,1),	hex	
values	(0,0,0x40000000).	

next_track_ID	is	a	non‐zero	integer	that	indicates	a	value	to	use	for	the	track	ID	of	the	next	track	
to	 be	 added	 to	 this	 presentation.	 Zero	 is	 not	 a	 valid	 track	 ID	 value.	 The	 value	 of	
next_track_ID	shall	be	larger	than	the	largest	track‐ID	in	use.	If	this	value	is	equal	to	all	1s	
(32‐bit	maxint),	and	a	new	media	track	is	to	be	added,	then	a	search	must	be	made	in	the	file	for	
an	unused	track	identifier.	

ISO/IEC 14496-12:2015(E)

24	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.3 Track Structure

8.3.1 Track Box

8.3.1.1 Definition

Box	Type:	 ‘trak’	
Container:	 Movie	Box	(‘moov’)	
Mandatory:	Yes	
Quantity:	 One	or	more	

This	is	a	container	box	for	a	single	track	of	a	presentation.	A	presentation	consists	of	one	or	more	tracks.	
Each	 track	 is	 independent	 of	 the	 other	 tracks	 in	 the	 presentation	 and	 carries	 its	 own	 temporal	 and	
spatial	information.	Each	track	will	contain	its	associated	Media	Box.	

Tracks	 are	 used	 for	 two	 purposes:	 (a)	 to	 contain	 media	 data	 (media	 tracks)	 and	 (b)	 to	 contain	
packetization	information	for	streaming	protocols	(hint	tracks).	

There	shall	be	at	least	one	media	track	within	an	ISO	file,	and	all	the	media	tracks	that	contributed	to	
the	hint	tracks	shall	remain	in	the	file,	even	if	the	media	data	within	them	is	not	referenced	by	the	hint	
tracks;	after	deleting	all	hint	tracks,	the	entire	un‐hinted	presentation	shall	remain.	

8.3.1.2 Syntax

aligned(8) class TrackBox extends Box(‘trak’) {
}

8.3.2 Track Header Box

8.3.2.1 Definition

Box	Type:	 ‘tkhd’	
Container:	 Track	Box	(‘trak’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

This	box	specifies	the	characteristics	of	a	single	track.	Exactly	one	Track	Header	Box	is	contained	in	a	
track.	

In	 the	 absence	 of	 an	 edit	 list,	 the	 presentation	 of	 a	 track	 starts	 at	 the	 beginning	 of	 the	 overall	
presentation.	An	empty	edit	is	used	to	offset	the	start	time	of	a	track.	

The	 default	 value	 of	 the	 track	 header	 flags	 for	 media	 tracks	 is	 7	 (track_enabled,	 track_in_movie,	
track_in_preview).	If	in	a	presentation	all	tracks	have	neither	track_in_movie	nor	track_in_preview	set,	
then	all	tracks	shall	be	treated	as	if	both	flags	were	set	on	all	tracks.	Server	hint	tracks	should	have	the	
track_in_movie	and	track_in_preview	set	to	0,	so	that	they	are	ignored	for	local	playback	and	
preview.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 25

	

Under	the	‘iso3’	brand	or	brands	that	share	its	requirements,	the	width	and	height	in	the	track	header	
are	measured	on	a	notional	'square'	(uniform)	grid.	Track	video	data	is	normalized	to	these	dimensions	
(logically)	 before	 any	 transformation	 or	 placement	 caused	 by	 a	 layup	 or	 composition	 system.	 Track	
(and	movie)	matrices,	if	used,	also	operate	in	this	uniformly‐scaled	space.	

The	duration	field	here	does	not	include	the	duration	of	following	movie	fragments,	if	any,	but	only	of	
the	media	 in	 the	enclosing	Movie	Box.	The	Movie	Extends	Header	box	may	be	used	 to	document	 the	
duration	including	movie	fragments,	when	desired	and	possible.	

8.3.2.2 Syntax

aligned(8) class TrackHeaderBox
 extends FullBox(‘tkhd’, version, flags){
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) track_ID;
 const unsigned int(32) reserved = 0;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) track_ID;
 const unsigned int(32) reserved = 0;
 unsigned int(32) duration;
 }
 const unsigned int(32)[2] reserved = 0;
 template int(16) layer = 0;
 template int(16) alternate_group = 0;
 template int(16) volume = {if track_is_audio 0x0100 else 0};
 const unsigned int(16) reserved = 0;
 template int(32)[9] matrix=
 { 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
 // unity matrix
 unsigned int(32) width;
 unsigned int(32) height;
}

8.3.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1	in	this	specification)	
flags is	a	24‐bit	integer	with	flags;	the	following	values	are	defined:	

Track_enabled:	Indicates	that	the	track	is	enabled.	Flag	value	is	0x000001.	A	disabled	track	(the	
low	bit	is	zero)	is	treated	as	if	it	were	not	present.	

Track_in_movie:	Indicates	that	the	track	is	used	in	the	presentation.	Flag	value	is	0x000002.	
Track_in_preview:	Indicates	that	the	track	is	used	when	previewing	the	presentation.	Flag	value	

is	0x000004.	
Track_size_is_aspect_ratio:	 Indicates	 that	 the	width	 and	height	 fields	 are	 not	 expressed	 in	

pixel	units.	The	values	have	the	same	units	but	these	units	are	not	specified.	The	values	are	
only	 an	 indication	 of	 the	 desired	 aspect	 ratio.	 If	 the	 aspect	 ratios	 of	 this	 track	 and	 other	
related	 tracks	are	not	 identical,	 then	 the	respective	positioning	of	 the	 tracks	 is	undefined,	
possibly	defined	by	external	contexts.	Flag	value	is	0x000008.	

creation_time is	 an	 integer	 that	 declares	 the	 creation	 time	 of	 this	 track	 (in	 seconds	 since	
midnight,	Jan.	1,	1904,	in	UTC	time).	

modification_time is	an	integer	that	declares	the	most	recent	time	the	track	was	modified	(in	
seconds	since	midnight,	Jan.	1,	1904,	in	UTC	time).	

track_ID is	 an	 integer	 that	 uniquely	 identifies	 this	 track	 over	 the	 entire	 life‐time	 of	 this	
presentation.	Track	IDs	are	never	re‐used	and	cannot	be	zero.	

ISO/IEC 14496-12:2015(E)

26	 ©	ISO/IEC	2015	–	All	rights	reserved

	

duration	 is	an	integer	that	indicates	the	duration	of	this	track	(in	the	timescale	indicated	in	the	
Movie	Header	Box).	The	value	of	this	field	is	equal	to	the	sum	of	the	durations	of	all	of	the	track’s	
edits.	If	there	is	no	edit	list,	then	the	duration	is	the	sum	of	the	sample	durations,	converted	into	
the	timescale	in	the	Movie	Header	Box.	If	the	duration	of	this	track	cannot	be	determined	then	
duration	is	set	to	all	1s.	

layer specifies	the	front‐to‐back	ordering	of	video	tracks;	tracks	with	lower	numbers	are	closer	
to	the	viewer.	0	is	the	normal	value,	and	‐1	would	be	in	front	of	track	0,	and	so	on.	

alternate_group is	 an	 integer	 that	 specifies	 a	 group	 or	 collection	 of	 tracks.	 If	 this	 field	 is	 0	
there	is	no	information	on	possible	relations	to	other	tracks.	If	this	field	is	not	0,	it	should	be	the	
same	for	tracks	that	contain	alternate	data	for	one	another	and	different	for	tracks	belonging	to	
different	such	groups.	Only	one	track	within	an	alternate	group	should	be	played	or	streamed	at	
any	one	time,	and	must	be	distinguishable	from	other	tracks	in	the	group	via	attributes	such	as	
bitrate,	codec,	language,	packet	size	etc.	A	group	may	have	only	one	member.	

volume is	a	fixed	8.8	value	specifying	the	track's	relative	audio	volume.	Full	volume	is	1.0	
(0x0100)	and	is	the	normal	value.	Its	value	is	irrelevant	for	a	purely	visual	track.	Tracks	may	be	
composed	by	combining	them	according	to	their	volume,	and	then	using	the	overall	Movie	
Header	Box	volume	setting;	or	more	complex	audio	composition	(e.g.	MPEG‐4	BIFS)	may	be	
used.	

matrix provides	a	transformation	matrix	for	the	video;	(u,v,w)	are	restricted	here	to	(0,0,1),	hex	
(0,0,0x40000000).	

width and height fixed‐point	16.16	values	are	track‐dependent	as	follows:	

For	text	and	subtitle	tracks,	they	may,	depending	on	the	coding	format,	describe	the	suggested	
size	of	the	rendering	area.	For	such	tracks,	the	value	0x0	may	also	be	used	to	indicate	that	the	
data	may	be	rendered	at	any	size,	that	no	preferred	size	has	been	indicated	and	that	the	actual	
size	may	be	determined	by	the	external	context	or	by	reusing	the	width	and	height	of	another	
track.	For	those	tracks,	the	flag	track_size_is_aspect_ratio	may	also	be	used.	

For	non‐visual	tracks	(e.g.	audio),	they	should	be	set	to	zero.	

For	all	other	tracks,	they	specify	the	track's	visual	presentation	size.	These	need	not	be	the	same	
as	 the	 pixel	 dimensions	 of	 the	 images,	which	 is	 documented	 in	 the	 sample	 description(s);	 all	
images	 in	 the	 sequence	 are	 scaled	 to	 this	 size,	 before	 any	overall	 transformation	of	 the	 track	
represented	by	the	matrix.	The	pixel	dimensions	of	the	images	are	the	default	values.	

8.3.3 Track Reference Box

8.3.3.1 Definition

Box	Type:	 `tref’	
Container:	 Track	Box	(‘trak’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	 box	 provides	 a	 reference	 from	 the	 containing	 track	 to	 another	 track	 in	 the	 presentation.	 These	
references	are	typed.	A	‘hint’	reference	links	from	the	containing	hint	track	to	the	media	data	that	it	
hints.	 A	 content	 description	 reference	‘cdsc’	 links	 a	 descriptive	 or	 metadata	 track	 to	 the	 content	
which	it	describes.	The	‘hind’	dependency	indicates	that	the	referenced	track(s)	may	contain	media	
data	required	for	decoding	of	 the	track	containing	the	track	reference.	The	referenced	tracks	shall	be	
hint	 tracks.	 The	 ‘hind’	 dependency	 can,	 for	 example,	 be	 used	 for	 indicating	 the	 dependencies	
between	hint	tracks	documenting	layered	IP	multicast	over	RTP.	

Exactly	one	Track	Reference	Box	can	be	contained	within	the	Track	Box.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 27

	

If	this	box	is	not	present,	the	track	is	not	referencing	any	other	track	in	any	way.	The	reference	array	is	
sized	to	fill	the	reference	type	box.	

8.3.3.2 Syntax

aligned(8) class TrackReferenceBox extends Box(‘tref’) {
}

aligned(8) class TrackReferenceTypeBox (unsigned int(32) reference_type) extends
Box(reference_type) {
 unsigned int(32) track_IDs[];
}

8.3.3.3 Semantics

The	Track	Reference	Box	contains	track	reference	type	boxes.	

track_ID is	an	integer	that	provides	a	reference	from	the	containing	track	to	another	track	in	the	
presentation.	track_IDs	are	never	re‐used	and	cannot	be	equal	to	zero.	

The	reference_type shall	be	set	to	one	of	the	following	values,	or	a	value	registered	or	from	a	
derived	specification	or	registration:	
 ‘hint’	 the	referenced	track(s)	contain	the	original	media	for	this	hint	track.	

 ‘cdsc‘	 this	track	describes	the	referenced	track.	

 ‘font‘ this	track	uses	fonts	carried/defined	in	the	referenced	track.	

 ‘hind‘	 this	 track	depends	on	the	referenced	hint	 track,	 i.e.,	 it	should	only	be	used	 if	 the	
referenced	hint	track	is	used.	

 ‘vdep’	 this	 track	 contains	 auxiliary	 depth	 video	 information	 for	 the	 referenced	 video	
track.	

 ‘vplx’	 this	 track	 contains	 auxiliary	 parallax	 video	 information	 for	 the	 referenced	 video	
track.	

 ‘subt’	 this	 track	 contains	 subtitle,	 timed	 text	 or	 overlay	 graphical	 information	 for	 the	
referenced	track	or	any	track	in	the	alternate	group	to	which	the	track	belongs,	if	
any.	

8.3.4 Track Group Box

8.3.4.1 Definition

Box	Type:	 ‘trgr’	
Container:	 Track	Box	(‘trak’)	
Mandatory:	 No	
Quantity:	 Zero	or	one	

This	box	enables	indication	of	groups	of	tracks,	where	each	group	shares	a	particular	characteristic	or	
the	tracks	within	a	group	have	a	particular	relationship.	The	box	contains	zero	or	more	boxes,	and	the	
particular	 characteristic	 or	 the	 relationship	 is	 indicated	 by	 the	 box	 type	 of	 the	 contained	 boxes.	 The	
contained	boxes	include	an	identifier,	which	can	be	used	to	conclude	the	tracks	belonging	to	the	same	

ISO/IEC 14496-12:2015(E)

28	 ©	ISO/IEC	2015	–	All	rights	reserved

	

track	group.	The	tracks	that	contain	the	same	type	of	a	contained	box	within	the	Track	Group	Box	and	
have	the	same	identifier	value	within	these	contained	boxes	belong	to	the	same	track	group.	

Track	groups	shall	not	be	used	to	indicate	dependency	relationships	between	tracks.	Instead,	the	Track	
Reference	Box	is	used	for	such	purposes.	

8.3.4.2 Syntax

aligned(8) class TrackGroupBox('trgr') {
}

aligned(8) class TrackGroupTypeBox(unsigned int(32) track_group_type) extends
FullBox(track_group_type, version = 0, flags = 0)
{
 unsigned int(32) track_group_id;
 // the remaining data may be specified for a particular track_group_type
}

8.3.4.3 Semantics

track_group_type	 indicates	the	grouping	type	and	shall	be	set	to	one	of	the	following	values,	or	a	
value	registered,	or	a	value	from	a	derived	specification	or	registration:	

 'msrc'	 indicates	 that	 this	 track	 belongs	 to	 a	multi‐source	 presentation.	 The	 tracks	 that	
have	 the	 same	 value	 of track_group_id	 within	 a	 Group	 Type	 Box	 of	
track_group_type	 'msrc'	 are	 mapped	 as	 being	 originated	 from	 the	 same	
source.	 For	 example,	 a	 recording	 of	 a	 video	 telephony	 call	may	have	both	 audio	
and	 video	 for	 both	 participants,	 and	 the	 value	 of	track_group_id	 associated	
with	 the	audio	 track	and	 the	video	 track	of	one	participant	differs	 from	value	of	
track_group_id	associated	with	the	tracks	of	the	other	participant.	

The	pair	of track_group_id	and	track_group_type	identifies	a	track	group	within	the	file.	The	
tracks	 that	 contain	 a	 particular	 track	 group	 type	 box	 having	 the	 same	 value	 of	 track_group_id	
belong	to	the	same	track	group.	

8.4 Track Media Structure

8.4.1 Media Box

8.4.1.1 Definition

Box	Type:	 ‘mdia’	
Container:	 Track	Box	(‘trak’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	media	declaration	container	contains	all	the	objects	that	declare	information	about	the	media	data	
within	a	track.	

8.4.1.2 Syntax

aligned(8) class MediaBox extends Box(‘mdia’) {
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 29

	

8.4.2 Media Header Box

8.4.2.1 Definition

Box	Type:	 ‘mdhd’	
Container:	 Media	Box	(‘mdia’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	 media	 header	 declares	 overall	 information	 that	 is	 media‐independent,	 and	 relevant	 to	
characteristics	of	the	media	in	a	track.	

8.4.2.2 Syntax

aligned(8) class MediaHeaderBox extends FullBox(‘mdhd’, version, 0) {
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) timescale;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) timescale;
 unsigned int(32) duration;
 }
 bit(1) pad = 0;
 unsigned int(5)[3] language; // ISO-639-2/T language code
 unsigned int(16) pre_defined = 0;
}

8.4.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1)	
creation_time is	an	integer	that	declares	the	creation	time	of	the	media	in	this	track	(in	

seconds	since	midnight,	Jan.	1,	1904,	in	UTC	time).	
modification_time is	an	integer	that	declares	the	most	recent	time	the	media	in	this	track	was	

modified	(in	seconds	since	midnight,	Jan.	1,	1904,	in	UTC	time).	
timescale is	an	integer	that	specifies	the	time‐scale	for	this	media;	this	is	the	number	of	time	

units	that	pass	in	one	second.	For	example,	a	time	coordinate	system	that	measures	time	in	
sixtieths	of	a	second	has	a	time	scale	of	60.	

duration	is	an	integer	that	declares	the	duration	of	this	media	(in	the	scale	of	the	timescale).	If	the	
duration	cannot	be	determined	then	duration	is	set	to	all	1s.	

language declares	 the	 language	 code	 for	 this	 media.	 See	 ISO	 639‐2/T	 for	 the	 set	 of	 three	
character	codes.	Each	character	 is	packed	as	 the	difference	between	 its	ASCII	value	and	0x60.	
Since	the	code	is	confined	to	being	three	lower‐case	letters,	these	values	are	strictly	positive.	

8.4.3 Handler Reference Box

8.4.3.1 Definition

Box	Type:	 ‘hdlr’	
Container:	 Media	Box	(‘mdia’)	or	Meta	Box	(‘meta’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

This	box	within	a	Media	Box	declares	media	type	of	the	track,	and	thus	the	process	by	which	the	media‐
data	 in	 the	 track	 is	 presented.	 For	 example,	 a	 format	 for	which	 the	decoder	delivers	 video	would	be	

ISO/IEC 14496-12:2015(E)

30	 ©	ISO/IEC	2015	–	All	rights	reserved

	

stored	 in	 a	 video	 track,	 identified	 by	 being	 handled	 by	 a	 video	 handler.	 The	 documentation	 of	 the	
storage	of	a	media	format	identifies	the	media	type	which	that	format	uses.	

This	box	when	present	within	a	Meta	Box,	declares	the	structure	or	format	of	the	'meta'	box	contents.	

There	 is	 a	 general	 handler	 for	metadata	 streams	 of	 any	 type;	 the	 specific	 format	 is	 identified	 by	 the	
sample	entry,	as	for	video	or	audio,	for	example.	

8.4.3.2 Syntax

aligned(8) class HandlerBox extends FullBox(‘hdlr’, version = 0, 0) {
 unsigned int(32) pre_defined = 0;
 unsigned int(32) handler_type;
 const unsigned int(32)[3] reserved = 0;
 string name;
}

8.4.3.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
handler_type	
–	when	present	in	a	media	box,	contains	a	value	as	defined	in	clause	12,	or	a	value	from	a	derived	
specification,	or	registration.	

-- when	present	in	a	meta	box,	contains	an	appropriate	value	to	indicate	the	format	of	the	meta	
box	contents.	The	value	‘null’ can	be	used	in	the	primary	meta	box	to	indicate	that	it	is	
merely	being	used	to	hold	resources.	

name is	a	null‐terminated	string	in	UTF‐8	characters	which	gives	a	human‐readable	name	for	the	
track	type	(for	debugging	and	inspection	purposes).	

8.4.4 Media Information Box

8.4.4.1 Definition

Box	Type:	 ‘minf’	
Container:	 Media	Box	(‘mdia’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

This	box	contains	all	the	objects	that	declare	characteristic	information	of	the	media	in	the	track.	

8.4.4.2 Syntax

aligned(8) class MediaInformationBox extends Box(‘minf’) {
}

8.4.5 Media Information Header Boxes

8.4.5.1 Definition

There	is	a	different	media	information	header	for	each	track	type	(corresponding	to	the	media	handler‐
type);	 the	matching	header	 shall	be	present,	which	may	be	one	of	 those	defined	 in	 clause	12,	 or	one	
defined	in	a	derived	specification.	

The	type	of	media	header	is	used	is	determined	by	the	definition	of	the	media	type	and	must	match	the	
media	handler.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 31

	

8.4.5.2 Null Media Header Box

8.4.5.2.1 Definition

Box	Types:	 	‘nmhd’	
Container:	 Media	Information	Box	(‘minf’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	specific	media	header	shall	be	present	

Streams	for	which	no	specific	media	header	is	identified	use	a	null	Media	Header	Box,	as	defined	here.	

8.4.5.2.2 Syntax

aligned(8) class NullMediaHeaderBox
 extends FullBox(’nmhd’, version = 0, flags) {
 }
8.4.5.2.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
flags ‐	is	a	24‐bit	integer	with	flags	(currently	all	zero).	

8.4.6 Extended language tag

8.4.6.1 Definition

Box	Type:	 ‘elng’	
Container:	 Media	Box	(‘mdia’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 extended	 language	 tag	 box	 represents	 media	 language	 information,	 based	 on	 RFC	 4646	 (Best	
Common	Practices	–	BCP	–	47)	industry	standard.	It	 is	an	optional	peer	of	the	media	header	box,	and	
must	occur	after	the	media	header	box.	

The	extended	language	tag	can	provide	better	language	information	than	the	language	field	in	the	Media	
Header,	including	information	such	as	region,	script,	variation,	and	so	on,	as	parts	(or	subtags).	

The	extended	language	tag	box	is	optional,	and	if	 it	 is	absent	the	media	language	should	be	used.	The	
extended	language	tag	overrides	the	media	language	if	they	are	not	consistent.	

For	best	compatibility	with	earlier	players,	if	an	extended	language	tag	is	specified,	the	most	compatible	
language	code	should	be	specified	in	the	language	field	of	the	Media	Header	box	(for	example,	"eng"	if	
the	extended	language	tag	is	"en‐UK").	If	there	is	no	reasonably	compatible	tag,	the	packed	form	of	'und'	
can	be	used.	

8.4.6.2 Syntax

aligned(8) class ExtendedLanguageBox extends FullBox(‘elng’, 0, 0) {
 string extended_language;
}

ISO/IEC 14496-12:2015(E)

32	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.4.6.3 Semantics

extended_language	is	a	NULL‐terminated	C	string	containing	an	RFC	4646	(BCP	47)	compliant	
language	tag	string,	such	as	"en‐US",	"fr‐FR",	or	"zh‐CN".	

8.5 Sample Tables

8.5.1 Sample Table Box

8.5.1.1 Definition

Box	Type:	 ‘stbl’	
Container:	 Media	Information	Box	(‘minf’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	 sample	 table	 contains	 all	 the	 time	 and	 data	 indexing	 of	 the	media	 samples	 in	 a	 track.	 Using	 the	
tables	 here,	 it	 is	 possible	 to	 locate	 samples	 in	 time,	 determine	 their	 type	 (e.g.	 I‐frame	 or	 not),	 and	
determine	their	size,	container,	and	offset	into	that	container.	

If	the	track	that	contains	the	Sample	Table	Box	references	no	data,	then	the	Sample	Table	Box	does	not	
need	to	contain	any	sub‐boxes	(this	is	not	a	very	useful	media	track).	

If	the	track	that	the	Sample	Table	Box	is	contained	in	does	reference	data,	then	the	following	sub‐boxes	
are	required:	Sample	Description,	Sample	Size,	Sample	To	Chunk,	and	Chunk	Offset.	Further,	the	Sample	
Description	 Box	 shall	 contain	 at	 least	 one	 entry.	 A	 Sample	 Description	 Box	 is	 required	 because	 it	
contains	the	data	reference	index	field	which	indicates	which	Data	Reference	Box	to	use	to	retrieve	the	
media	 samples.	 Without	 the	 Sample	 Description,	 it	 is	 not	 possible	 to	 determine	 where	 the	 media	
samples	are	stored.	The	Sync	Sample	Box	is	optional.	If	the	Sync	Sample	Box	is	not	present,	all	samples	
are	sync	samples.	

A.7	provides	a	narrative	description	of	random	access	using	the	structures	defined	in	the	Sample	Table	
Box.	

8.5.1.2 Syntax

aligned(8) class SampleTableBox extends Box(‘stbl’) {
}

8.5.2 Sample Description Box

8.5.2.1 Definition

Box	Types:	 ‘stsd’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	 sample	 description	 table	 gives	 detailed	 information	 about	 the	 coding	 type	 used,	 and	 any	
initialization	information	needed	for	that	coding.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 33

	

The	information	stored	in	the	sample	description	box	after	the	entry‐count		is	both	track‐type	specific	
as	 documented	 here,	 and	 can	 also	 have	 variants	within	 a	 track	 type	 (e.g.	 different	 codings	may	 use	
different	specific	information	after	some	common	fields,	even	within	a	video	track).	

Which	 type	of	 sample	 entry	 form	 is	used	 is	determined	by	 the	media	handler,	 using	 a	 suitable	 form,	
such	as	one	defined	in	clause	12,	or	defined	in	a	derived	specification,	or	registration.	

Multiple	descriptions	may	be	used	within	a	track.	

Note	 Though	the	count	is	32	bits,	the	number	of	items	is	usually	much	fewer,	and	is	restricted	by	the	fact	
that	the	reference	index	in	the	sample	table	is	only	16	bits	

If	 the	 ‘format’	 field	 of	 a	 SampleEntry	 is	 unrecognized,	 neither	 the	 sample	 description	 itself,	 nor	 the	
associated	media	samples,	shall	be	decoded.	

Note	 The	 definition	 of	 sample	 entries	 specifies	 boxes	 in	 a	 particular	 order,	 and	 this	 is	 usually	 also	 followed	 in	
derived	specifications.	For	maximum	compatibility,	writers	 should	construct	 files	 respecting	 the	order	both	within	
specifications	and	as	implied	by	the	inheritance,	whereas	readers	should	be	prepared	to	accept	any	box	order.	

All	string	fields	shall	be	null‐terminated,	even	if	unused.	“Optional”	means	there	is	at	least	one	null	byte.	

Entries	 that	 identify	 the	 format	 by	 MIME	 type,	 such	 as	 a	 TextSubtitleSampleEntry,	
TextMetaDataSampleEntry,	or	SimpleTextSampleEntry,	all	of	which	contain	a	MIME	type,	may	be	used	
to	identify	the	format	of	streams	for	which	a	MIME	type	applies.	A	MIME	type	applies	if	the	contents	of	
the	string	in	the	optional	configuration	box	(without	its	null	termination),	followed	by	the	contents	of	a	
set	 of	 samples,	 starting	with	 a	 sync	 sample	 and	 ending	 at	 the	 sample	 immediately	 preceding	 a	 sync	
sample,	 are	 concatenated	 in	 their	 entirety,	 and	 the	 result	 meets	 the	 decoding	 requirements	 for	
documents	 of	 that	 MIME	 type.	 Non‐sync	 samples	 should	 be	 used	 only	 if	 that	 format	 specifies	 the	
behaviour	 of	 ‘progressive	 decoding’,	 and	 then	 the	 sample	 times	 indicate	 when	 the	 results	 of	 such	
progressive	decoding	should	be	presented	(according	to	the	media	type).	

Note	 The	samples	in	a	track	that	is	all	sync	samples	are	therefore	each	a	valid	document	for	that	MIME	
type.	

In	some	classes	derived	 from	SampleEntry,	namespace	and	schema_location	are	used	both	to	 identify	
the	 XML	 document	 content	 and	 to	 declare	 “brand”	 or	 profile	 compatibility.	 Multiple	 namespace	
identifiers	 indicate	that	 the	track	conforms	to	the	specification	represented	by	each	of	 the	 identifiers,	
some	of	which	may	identify	supersets	of	the	features	present.	A	decoder	should	be	able	to	decode	all	the	
namespaces	in	order	to	be	able	to	decode	and	present	correctly	the	media	associated	with	this	sample	
entry.	

Note	 Additionally,	 namespace	 identifiers	 may	 represent	 performance	 constraints,	 such	 as	 limits	 on	
document	 size,	 font	 size,	 drawing	 rate,	 etc.,	 as	 well	 as	 syntax	 constraints	 such	 as	 features	 that	 are	 not	
permitted	or	ignored.	

8.5.2.2 Syntax

aligned(8) abstract class SampleEntry (unsigned int(32) format)
 extends Box(format){
 const unsigned int(8)[6] reserved = 0;
 unsigned int(16) data_reference_index;
}

ISO/IEC 14496-12:2015(E)

34	 ©	ISO/IEC	2015	–	All	rights	reserved

	

class BitRateBox extends Box(‘btrt’){
 unsigned int(32) bufferSizeDB;
 unsigned int(32) maxBitrate;
 unsigned int(32) avgBitrate;
}

aligned(8) class SampleDescriptionBox (unsigned int(32) handler_type)
 extends FullBox('stsd', version, 0){
 int i ;
 unsigned int(32) entry_count;
 for (i = 1 ; i <= entry_count ; i++){
 SampleEntry(); // an instance of a class derived from SampleEntry
 }
}

8.5.2.3 Semantics

version is	set	to	zero	unless	the	box	contains	an	AudioSampleEntryV1,	whereupon	version	must	
be	1	

entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table	
SampleEntry	is	the	appropriate	sample	entry.	
data_reference_index	 is	 an	 integer	 that	 contains	 the	 index	 of	 the	 data	 reference	 to	 use	 to	

retrieve	 data	 associated	 with	 samples	 that	 use	 this	 sample	 description.	 Data	 references	 are	
stored	in	Data	Reference	Boxes.	The	index	ranges	from	1	to	the	number	of	data	references.	

bufferSizeDB	gives	the	size	of	the	decoding	buffer	for	the	elementary	stream	in	bytes.	
maxBitrate	gives	the	maximum	rate	in	bits/second	over	any	window	of	one	second.	
avgBitrate	gives	the	average	rate	in	bits/second	over	the	entire	presentation.	

8.5.3 Degradation Priority Box

8.5.3.1 Definition

Box	Type:	 ‘stdp’	
Container:	 Sample	Table	Box	(‘stbl’).	
Mandatory:	No.	
Quantity:	 Zero	or	one.	

This	box	contains	the	degradation	priority	of	each	sample.	The	values	are	stored	 in	the	table,	one	 for	
each	sample.	The	size	of	 the	 table,	sample_count	 is	 taken	 from	the	sample_count	 in	 the	Sample	
Size	Box	('stsz').	Specifications	derived	from	this	define	the	exact	meaning	and	acceptable	range	of	
the	priority	field.	

8.5.3.2 Syntax

aligned(8) class DegradationPriorityBox
 extends FullBox(‘stdp’, version = 0, 0) {
 int i;
 for (i=0; i < sample_count; i++) {
 unsigned int(16) priority;
 }
}

8.5.3.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
priority ‐	is	integer	specifying	the	degradation	priority	for	each	sample.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 35

	

8.5.4 Sample Scale Box

(empty	sub‐clause)	

8.6 Track Time Structures

8.6.1 Time to Sample Boxes

8.6.1.1 Definition

The	composition	times	(CT)	and	decoding	times	(DT)	of	samples	are	derived	from	the	Time	to	Sample	
Boxes,	of	which	there	are	two	types.	The	decoding	time	is	defined	in	the	Decoding	Time	to	Sample	Box,	
giving	 time	 deltas	 between	 successive	 decoding	 times.	 The	 composition	 times	 are	 derived	 in	 the	
Composition	Time	 to	Sample	Box	as	composition	 time	offsets	 from	decoding	 time.	 If	 the	composition	
times	and	decoding	times	are	 identical	 for	every	sample	 in	the	track,	 then	only	the	Decoding	Time	to	
Sample	Box	is	required;	the	composition	time	to	sample	box	must	not	be	present.	

The	time	to	sample	boxes	must	give	non‐zero	durations	for	all	samples	with	the	possible	exception	of	
the	last	one.	Durations	in	the	‘stts’	box	are	strictly	positive	(non‐zero),	except	for	the	very	last	entry,	
which	may	be	 zero.	This	 rule	derives	 from	 the	 rule	 that	no	 two	 time‐stamps	 in	 a	 stream	may	be	 the	
same.	Great	care	must	be	taken	when	adding	samples	to	a	stream,	that	the	sample	that	was	previously	
last	may	need	to	have	a	non‐zero	duration	established,	in	order	to	observe	this	rule.	If	the	duration	of	
the	last	sample	is	indeterminate,	use	an	arbitrary	small	value	and	a	‘dwell’	edit.	

Some	coding	systems	may	allow	samples	 that	are	used	only	 for	reference	and	not	output	 (e.g.	a	non‐
displayed	 reference	 frame	 in	 video).	 When	 any	 such	 non‐output	 sample	 is	 present	 in	 a	 track,	 the	
following	applies:	

1) A	non‐output	sample	shall	be	given	a	composition	time	which	is	outside	the	time‐range	of	the	
samples	that	are	output.	

2) An	edit	list	shall	be	used	to	exclude	the	composition	times	of	the	non‐output	samples.	

3) When	the	track	includes	a	CompositionOffsetBox	(‘ctts’),	

a. version	1	of	the	CompositionOffsetBox	shall	be	used,	

b. the	value	of	sample_offset	shall	be	set	equal	to	the	most	negative	number	possible	
(for	32‐bit	values,	‐231)	for	each	non‐output	sample,	

c. the	CompositionToDecodeBox	(‘cslg’)	should	be	contained	in	the	SampleTableBox	
(‘stbl’)	of	the	track,	and	

d. when	the	CompositionToDecodeBox	is	present	for	the	track,	the	value	of	
leastDecodeToDisplayDelta	field	in	the	box	shall	be	equal	to	the	smallest	
composition	offset	in	the	CompositionOffsetBox	excluding	the	sample_offset	values	
for	non‐output	samples.	

Note	 Thus,	leastDecodeToDisplayDelta	is	greater	than	‐231.	

In	the	following	example,	there	is	a	sequence	of	I,	P,	and	B	frames,	each	with	a	decoding	time	delta	of	10.	
The	 samples	 are	 stored	 as	 follows,	 with	 the	 indicated	 values	 for	 their	 decoding	 time	 deltas	 and	
composition	time	offsets	(the	actual	CT	and	DT	are	given	for	reference).	The	re‐ordering	occurs	because	
the	predicted	P	frames	must	be	decoded	before	the	bi‐directionally	predicted	B	frames.	The	value	of	DT	

ISO/IEC 14496-12:2015(E)

36	 ©	ISO/IEC	2015	–	All	rights	reserved

	

for	a	sample	is	always	the	sum	of	the	deltas	of	the	preceding	samples.	Note	that	the	total	of	the	decoding	
deltas	is	the	duration	of	the	media	in	this	track.	

Table 2 — Closed GOP Example

GOP	 /‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐\	 /‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐‐	 ‐‐\	

	 I1	 P4	 B2	 B3	 P7	 B5	 B6	 I8	 P11 B9	 B10 P14	 B12	 B13	

DT	 0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100 110	 120	 130	

CT	 10	 40	 20	 30	 70	 50	 60	 80	 110 90	 100 140	 120	 130	

Decode	delta	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	

Composition	
offset	

10	 30	 0	 0	 30	 0	 0	 10	 30	 0	 0	 30	 0	 0	

Table 3 — Open GOP Example

GOP	 /‐‐	 ‐‐	 ‐‐	 ‐‐	 ‐‐	 ‐‐\	 /‐	 ‐‐	 ‐‐	 ‐‐	 ‐‐‐	 ‐‐\	
 	 I3		 	B1		 	B2		 	P6		 	B4		 B5		 I9		 B7		 B8	 P12	 B10	 B11	
DT	 0		 10		 20		 30		 40	 50		 60		 70		 80	 90	 100	 110	
CT		 30		 10		 20		 60		 40		 50		 90		 70		 80	 120	 100	 110	
Decode	Delta	 10		 10		 10		 10	 10		 10		 10		 10		 10	 10	 10	 10	
Composition	
offset	

30		 0		 0		 30		 0		 0		 30		 0		 0	 30	 0	 0	

8.6.1.2 Decoding Time to Sample Box

8.6.1.2.1 Definition

Box	Type:	 ‘stts’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

This	 box	 contains	 a	 compact	 version	 of	 a	 table	 that	 allows	 indexing	 from	 decoding	 time	 to	 sample	
number.	Other	tables	give	sample	sizes	and	pointers,	from	the	sample	number.	Each	entry	in	the	table	
gives	the	number	of	consecutive	samples	with	the	same	time	delta,	and	the	delta	of	those	samples.	By	
adding	the	deltas	a	complete	time‐to‐sample	map	may	be	built.	

The	Decoding	 Time	 to	 Sample	 Box	 contains	 decode	 time	 delta's:	 DT(n+1)	 =	 DT(n)	 +	 STTS(n)	where	
STTS(n)	is	the	(uncompressed)	table	entry	for	sample	n.	

The	sample	entries	are	ordered	by	decoding	time	stamps;	therefore	the	deltas	are	all	non‐negative.	

The	DT	axis	has	a	zero	origin;	DT(i)	=	SUM(for	j=0	to	i‐1	of	delta(j)),	and	the	sum	of	all	deltas	gives	the	
length	of	the	media	in	the	track	(not	mapped	to	the	overall	timescale,	and	not	considering	any	edit	list).	

The	Edit	List	Box	provides	the	initial	CT	value	if	it	is	non‐empty	(non‐zero).	

8.6.1.2.2 Syntax

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 37

	

aligned(8) class TimeToSampleBox
 extends FullBox(’stts’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 unsigned int(32) sample_delta;
 }
}

For	example	with	Table	2,	the	entry	would	be:	

Sample	count	
Sample‐
delta	

14	 10	

	

8.6.1.2.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
entry_count		‐	is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
sample_count		‐	is	an	integer	that	counts	the	number	of	consecutive	samples	that	have	the	given	

duration.	
sample_delta	‐	is	an	integer	that	gives	the	delta	of	these	samples	in	the	time‐scale	of	the	media.	

8.6.1.3 Composition Time to Sample Box

8.6.1.3.1 Definition

Box	Type:	 ‘ctts’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	provides	the	offset	between	decoding	time	and	composition	time.	In	version	0	of	this	box	the	
decoding	 time	 must	 be	 less	 than	 the	 composition	 time,	 and	 the	 offsets	 are	 expressed	 as	 unsigned	
numbers	 such	 that	 CT(n)	 =	 DT(n)	 +	 CTTS(n)	 where	 CTTS(n)	 is	 the	 (uncompressed)	 table	 entry	 for	
sample	n.	In	version	1	of	this	box,	the	composition	timeline	and	the	decoding	timeline	are	still	derived	
from	 each	 other,	 but	 the	 offsets	 are	 signed.	 It	 is	 recommended	 that	 for	 the	 computed	 composition	
timestamps,	there	is	exactly	one	with	the	value	0	(zero).	

For	either	version	of	the	box,	each	sample	must	have	a	unique	composition	timestamp	value,	that	is,	the	
timestamp	for	two	samples	shall	never	be	the	same.	

It	may	be	true	that	there	is	no	frame	to	compose	at	time	0;	the	handling	of	this	is	unspecified	(systems	
might	display	the	first	frame	for	longer,	or	a	suitable	fill	colour).	

When	version	1	of	 this	box	 is	used,	 the	CompositionToDecodeBox	may	also	be	present	 in	 the	sample	
table	to	relate	the	composition	and	decoding	timelines.	When	backwards‐compatibility	or	compatibility	
with	an	unknown	set	of	readers	is	desired,	version	0	of	this	box	should	be	used	when	possible.	In	either	
version	of	this	box,	but	particularly	under	version	0,	if	it	is	desired	that	the	media	start	at	track	time	0,	
and	the	first	media	sample	does	not	have	a	composition	time	of	0,	an	edit	list	may	be	used	to	‘shift’	the	
media	to	time	0.	

ISO/IEC 14496-12:2015(E)

38	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	composition	time	to	sample	table	is	optional	and	must	only	be	present	if	DT	and	CT	differ	for	any	
samples.	

Hint	tracks	do	not	use	this	box.	

For	example	in	Table	2	

Sample	count	 Sample_offset	

1	 10	

1	 30	

2	 0	

1	 30	

2	 0	

1	 10	

1	 30	

2	 0	

1	 30	

2	 0	

	

8.6.1.3.2 Syntax

aligned(8) class CompositionOffsetBox
 extends FullBox(‘ctts’, version, 0) {
 unsigned int(32) entry_count;
 int i;
 if (version==0) {
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 unsigned int(32) sample_offset;
 }
 }
 else if (version == 1) {
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 signed int(32) sample_offset;
 }
 }
}

8.6.1.3.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
entry_count is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
sample_count	 is	an	 integer	 that	counts	 the	number	of	consecutive	samples	 that	have	the	given	

offset.	
sample_offset	is	an	integer	that	gives	the	offset	between	CT	and	DT,	such	that	CT(n)	=	DT(n)	+	

CTTS(n).	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 39

	

8.6.1.4 Composition to Decode Box

8.6.1.4.1 Definition

Box	Type:	 ‘cslg’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Extension	Properties	Box	(‘trep’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

When	signed	composition	offsets	are	used,	this	box	may	be	used	to	relate	the	composition	and	decoding	
timelines,	and	deal	with	some	of	the	ambiguities	that	signed	composition	offsets	introduce.	

Note	 that	 all	 these	 fields	 apply	 to	 the	 entire	 media	 (not	 just	 that	 selected	 by	 any	 edits).	 It	 is	
recommended	that	any	edits,	explicit	or	implied,	not	select	any	portion	of	the	composition	timeline	that	
does	not	map	to	a	sample.	For	example,	if	the	smallest	composition	time	is	1000,	then	the	default	edit	
from	0	to	the	media	duration	leaves	the	period	from	0	to	1000	associated	with	no	media	sample.	Player	
behaviour,	 and	 what	 is	 composed	 in	 this	 interval,	 is	 undefined	 under	 these	 circumstances.	 It	 is	
recommended	that	the	smallest	computed	CTS	be	zero,	or	match	the	beginning	of	the	first	edit.	

The	composition	duration	of	 the	 last	sample	 in	a	 track	might	be	(often	 is)	ambiguous	or	unclear;	 the	
field	 for	 composition	 end	 time	 can	 be	 used	 to	 clarify	 this	 ambiguity	 and,	with	 the	 composition	 start	
time,	establish	a	clear	composition	duration	for	the	track.	

When	 the	 Composition	 to	 Decode	 Box	 is	 included	 in	 the	 Sample	 Table	 Box,	 it	 documents	 the	
composition	 and	 decoding	 time	 relations	 of	 the	 samples	 in	 the	 Movie	 Box	 only,	 not	 including	 any	
subsequent	movie	fragments.	When	the	Composition	to	Decode	Box	is	included	in	the	Track	Extension	
Properties	Box,	it	documents	the	composition	and	decoding	time	relations	of	the	samples	in	all	movie	
fragments	following	the	Movie	Box.	

Version	1	of	this	box	supports	64‐bit	timestamps	and	should	only	be	used	if	needed	(at	least	one	value	
does	not	fit	into	32	bits).	

8.6.1.4.2 Syntax

class CompositionToDecodeBox extends FullBox(‘cslg’, version, 0) {
 if (version==0) {
 signed int(32) compositionToDTSShift;
 signed int(32) leastDecodeToDisplayDelta;
 signed int(32) greatestDecodeToDisplayDelta;
 signed int(32) compositionStartTime;
 signed int(32) compositionEndTime;
 } else {
 signed int(64) compositionToDTSShift;
 signed int(64) leastDecodeToDisplayDelta;
 signed int(64) greatestDecodeToDisplayDelta;
 signed int(64) compositionStartTime;
 signed int(64) compositionEndTime;
 }
}

8.6.1.4.3 Semantics

compositionToDTSShift:	 	if	this	value	is	added	to	the	composition	times	(as	calculated	by	the	
CTS	offsets	 from	the	DTS),	 then	 for	all	 samples,	 their	CTS	 is	guaranteed	 to	be	greater	 than	or	
equal	to	their	DTS,	and	the	buffer	model	implied	by	the	indicated	profile/level	will	be	honoured;	

ISO/IEC 14496-12:2015(E)

40	 ©	ISO/IEC	2015	–	All	rights	reserved

	

if	leastDecodeToDisplayDelta	is	positive	or	zero,	this	field	can	be	0;	otherwise	it	should	
be	at	least	(- leastDecodeToDisplayDelta)	

leastDecodeToDisplayDelta:	 	 the	 smallest	 composition	 offset	 in	 the	
CompositionTimeToSample	box	in	this	track	

greatestDecodeToDisplayDelta:	 	 the	 largest	 composition	 offset	 in	 the	
CompositionTimeToSample	box	in	this	track	

compositionStartTime:	 	the	smallest	computed	composition	time	(CTS)	for	any	sample	in	the	
media	of	this	track	

compositionEndTime:	the	composition	time	plus	the	composition	duration,	of	the	sample	with	
the	 largest	 computed	composition	 time	(CTS)	 in	 the	media	of	 this	 track;	 if	 this	 field	 takes	 the	
value	0,	the	composition	end	time	is	unknown.	

8.6.2 Sync Sample Box

8.6.2.1 Definition

Box	Type:	 ‘stss’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	provides	a	compact	marking	of	the	sync	samples	within	the	stream.	The	table	is	arranged	in	
strictly	increasing	order	of	sample	number.	

If	the	sync	sample	box	is	not	present,	every	sample	is	a	sync	sample.	

8.6.2.2 Syntax

aligned(8) class SyncSampleBox
 extends FullBox(‘stss’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_number;
 }
 }

8.6.2.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
entry_count is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	If	entry_count	

is	zero,	there	are	no	sync	samples	within	the	stream	and	the	following	table	is	empty.	
sample_number	gives	the	numbers	of	the	samples	that	are	sync	samples	in	the	stream.	

8.6.3 Shadow Sync Sample Box

8.6.3.1 Definition

Box	Type:	 ‘stsh’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	shadow	sync	table	provides	an	optional	set	of	sync	samples	that	can	be	used	when	seeking	or	for	
similar	purposes.	In	normal	forward	play	they	are	ignored.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 41

	

Each	entry	 in	the	ShadowSyncTable	consists	of	a	pair	of	sample	numbers.	The	 first	entry	(shadowed‐
sample‐number)	indicates	the	number	of	the	sample	that	a	shadow	sync	will	be	defined	for.	This	should	
always	 be	 a	 non‐sync	 sample	 (e.g.	 a	 frame	 difference).	 The	 second	 sample	 number	 (sync‐sample‐
number)	indicates	the	sample	number	of	the	sync	sample	(i.e.	key	frame)	that	can	be	used	when	there	is	
a	need	for	a	sync	sample	at,	or	before,	the	shadowed‐sample‐number.	

The	entries	in	the	ShadowSyncBox	shall	be	sorted	based	on	the	shadowed‐sample‐number	field.	

The	 shadow	 sync	 samples	 are	 normally	 placed	 in	 an	 area	 of	 the	 track	 that	 is	 not	 presented	 during	
normal	play	 (edited	out	by	means	of	an	edit	 list),	 though	 this	 is	not	a	requirement.	The	shadow	sync	
table	 can	be	 ignored	and	 the	 track	will	play	 (and	seek)	 correctly	 if	 it	 is	 ignored	 (though	perhaps	not	
optimally).	

The	ShadowSyncSample	replaces,	not	augments,	the	sample	that	it	shadows	(i.e.	the	next	sample	sent	is	
shadowed‐sample‐number+1).	The	shadow	sync	 sample	 is	 treated	as	 if	 it	occurred	at	 the	 time	of	 the	
sample	it	shadows,	having	the	duration	of	the	sample	it	shadows.	

Hinting	 and	 transmission	 might	 become	 more	 complex	 if	 a	 shadow	 sample	 is	 used	 also	 as	 part	 of	
normal	playback,	or	is	used	more	than	once	as	a	shadow.	In	this	case	the	hint	track	might	need	separate	
shadow	syncs,	all	of	which	can	get	 their	media	data	 from	the	one	shadow	sync	 in	 the	media	 track,	 to	
allow	for	the	different	time‐stamps	etc.	needed	in	their	headers.	

8.6.3.2 Syntax

aligned(8) class ShadowSyncSampleBox
 extends FullBox(‘stsh’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) shadowed_sample_number;
 unsigned int(32) sync_sample_number;
 }
 }

8.6.3.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
entry_count	‐	is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
shadowed_sample_number	‐	gives	the	number	of	a	sample	for	which	there	is	an	alternative	sync	

sample.	
sync_sample_number	‐	gives	the	number	of	the	alternative	sync	sample.	

8.6.4 Independent and Disposable Samples Box

8.6.4.1 Definition

Box	Types:	 ‘sdtp’	
Container:	 Sample	Table	Box	(‘stbl’)		
Mandatory:	No	
Quantity:	 Zero	or	one	

This	optional	table	answers	three	questions	about	sample	dependency:	
1) does	this	sample	depend	on	others	(e.g.	is	it	an	I‐picture)?	
2) do	no	other	samples	depend	on	this	one?	

ISO/IEC 14496-12:2015(E)

42	 ©	ISO/IEC	2015	–	All	rights	reserved

	

3) does	 this	 sample	 contain	 multiple	 (redundant)	 encodings	 of	 the	 data	 at	 this	 time‐instant	
(possibly	with	different	dependencies)?	

In	the	absence	of	this	table:	
1) the	sync	sample	 table	(partly)	answers	 the	 first	question;	 in	most	video	codecs,	 I‐pictures	are	

also	sync	points,	
2) the	dependency	of	other	samples	on	this	one	is	unknown.	
3) the	existence	of	redundant	coding	is	unknown.	

When	performing	‘trick’	modes,	such	as	fast‐forward,	it	is	possible	to	use	the	first	piece	of	information	
to	locate	independently	decodable	samples.	Similarly,	when	performing	random	access,	it	may	be	
necessary	to	locate	the	previous	sync	sample	or	random	access	recovery	point,	and	roll‐forward	from	
the	sync	sample	or	the	pre‐roll	starting	point	of	the	random	access	recovery	point	to	the	desired	point.	
While	rolling	forward,	samples	on	which	no	others	depend	need	not	be	retrieved	or	decoded.	

The	value	of	‘sample_is_depended_on’	is	independent	of	the	existence	of	redundant	codings.	However,	a	
redundant	coding	may	have	different	dependencies	from	the	primary	coding;	if	redundant	codings	are	
available,	the	value	of	‘sample_depends_on’	documents	only	the	primary	coding.	

A	 leading	 sample	 (usually	 a	 picture	 in	 video)	 is	 defined	 relative	 to	 a	 reference	 sample,	which	 is	 the	
immediately	prior	sample	that	is	marked	as	“sample_depends_on”	having	no	dependency	(an	I	picture).	
A	leading	sample	has	both	a	composition	time	before	the	reference	sample,	and	possibly	also	a	decoding	
dependency	on	a	sample	before	the	reference	sample.	Therefore	if,	for	example,	playback	and	decoding	
were	to	start	at	the	reference	sample,	those	samples	marked	as	leading	would	not	be	needed	and	might	
not	be	decodable.	A	leading	sample	itself	must	therefore	not	be	marked	as	having	no	dependency.	

For	 tracks	 with	 a	 handler_type	 that	 is	 not	 ‘vide’,	 ‘soun’,	 ‘hint’	 or	 ‘auxv’,	 if	 another	 sample	 with	
sample_depends_on=2 or	another	sample	 tagged	as	a	 “Sync	Sample”	has	already	been	processed	
and	 unless	 specified	 otherwise,	 a	 sample	 tagged	 with	 sample_depends_on=2,	 and	
sample_has_redundancy=1	 can	 be	 discarded,	 and	 its	 duration	 added	 to	 the	 duration	 of	 the	
preceding	one,	to	maintain	the	timing	of	subsequent	samples.	

The	 size	 of	 the	 table,	 sample_count,	 is	 taken	 from	 the	 sample_count	 in	 the	 Sample	 Size	 Box	
('stsz')	or	Compact	Sample	Size	Box	(‘stz2’).	

8.6.4.2 Syntax

aligned(8) class SampleDependencyTypeBox
 extends FullBox(‘sdtp’, version = 0, 0) {
 for (i=0; i < sample_count; i++){
 unsigned int(2) is_leading;
 unsigned int(2) sample_depends_on;
 unsigned int(2) sample_is_depended_on;
 unsigned int(2) sample_has_redundancy;
 }
}

8.6.4.3 Semantics

is_leading	takes	one	of	the	following	four	values:	
0:	 the	leading	nature	of	this	sample	is	unknown;	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 43

	

1:	 this	sample	is	a	leading	sample	that	has	a	dependency	before	the	referenced	I‐picture	(and	is	
therefore	not	decodable);	

2:	 this	sample	is	not	a	leading	sample;	
3:	 this	sample	is	a	leading	sample	that	has	no	dependency	before	the	referenced	I‐picture	(and	
is	therefore	decodable);	

sample_depends_on	takes	one	of	the	following	four	values:	
0:	 the	dependency	of	this	sample	is	unknown;	
1:	 this	sample	does	depend	on	others	(not	an	I	picture);	
2:	 this	sample	does	not	depend	on	others	(I	picture);	
3:	 reserved	

sample_is_depended_on	takes	one	of	the	following	four	values:	
0:	 the	dependency	of	other	samples	on	this	sample	is	unknown;	
1:	 other	samples	may	depend	on	this	one	(not	disposable);	
2:	 no	other	sample	depends	on	this	one	(disposable);	
3:	 reserved

sample_has_redundancy	takes	one	of	the	following	four	values:	
0:	 it	is	unknown	whether	there	is	redundant	coding	in	this	sample;	
1:	 there	is	redundant	coding	in	this	sample;	
2:	 there	is	no	redundant	coding	in	this	sample;	
3:	 reserved	

8.6.5 Edit Box

8.6.5.1 Definition

Box	Type:	 ‘edts’	
Container:	 Track	Box	(‘trak’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

An	Edit	Box	maps	the	presentation	time‐line	to	the	media	time‐line	as	it	 is	stored	in	the	file.	The	Edit	
Box	is	a	container	for	the	edit	lists.	

The	Edit	Box	 is	optional.	 In	 the	absence	of	 this	box,	 there	 is	 an	 implicit	one‐to‐one	mapping	of	 these	
time‐lines,	and	the	presentation	of	a	track	starts	at	the	beginning	of	the	presentation.	An	empty	edit	is	
used	to	offset	the	start	time	of	a	track.	

8.6.5.2 Syntax

aligned(8) class EditBox extends Box(‘edts’) {
}

8.6.6 Edit List Box

8.6.6.1 Definition

Box	Type:	 ‘elst’	
Container:	 Edit	Box	(‘edts’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	contains	an	explicit	timeline	map.	Each	entry	defines	part	of	the	track	time‐line:	by	mapping	
part	of	the	media	time‐line,	or	by	indicating	‘empty’	time,	or	by	defining	a	‘dwell’,	where	a	single	time‐
point	in	the	media	is	held	for	a	period.	

ISO/IEC 14496-12:2015(E)

44	 ©	ISO/IEC	2015	–	All	rights	reserved

	

NOTE	Edits	are	not	restricted	to	fall	on	sample	times.	This	means	that	when	entering	an	edit,	it	can	be	necessary	
to	 (a)	back	up	 to	 a	 sync	point,	 and	pre‐roll	 from	 there	 and	 then	 (b)	be	 careful	 about	 the	duration	of	 the	 first	
sample	—	it	might	have	been	truncated	if	the	edit	enters	it	during	its	normal	duration.	If	this	is	audio,	that	frame	
might	need	 to	be	decoded,	and	 then	 the	 final	slicing	done.	Likewise,	 the	duration	of	 the	 last	sample	 in	an	edit	
might	need	slicing.	

Starting	 offsets	 for	 tracks	 (streams)	 are	 represented	 by	 an	 initial	 empty	 edit.	 For	 example,	 to	 play	 a	
track	from	its	start	for	30	seconds,	but	at	10	seconds	into	the	presentation,	we	have	the	following	edit	
list:	

Entry‐count	=	2	
	
Segment‐duration	=	10	seconds	
Media‐Time	=	‐1	
Media‐Rate	=	1	
	
Segment‐duration	=	30	seconds	(could	be	the	length	of	the	whole	track)	
Media‐Time	=	0	seconds	
Media‐Rate	=	1	

A	non‐empty	edit	may	insert	a	portion	of	the	media	timeline	that	is	not	present	in	the	initial	movie,	and	
is	present	only	in	subsequent	movie	fragments.	Particularly	in	an	empty	initial	movie	of	a	fragmented	
movie	file	(when	there	are	no	media	samples	yet	present),	the	segment_duration	of	this	edit	may	be	
zero,	whereupon	the	edit	provides	the	offset	from	media	composition	time	to	movie	presentation	time,	
for	 the	 movie	 and	 subsequent	 movie	 fragments.	 It	 is	 recommended	 that	 such	 an	 edit	 be	 used	 to	
establish	a	presentation	time	of	0	for	the	first	presented	sample,	when	composition	offsets	are	used.	

For	 example,	 if	 the	 composition	 time	 of	 the	 first	 composed	 frame	 is	 20,	 then	 the	 edit	 that	maps	 the	
media	time	from	20	onwards	to	movie	time	0	onwards,	would	read:	

Entry‐count	=	1	
	
Segment‐duration	=	0	
Media‐Time	=	20	
Media‐Rate	=	1	

8.6.6.2 Syntax

aligned(8) class EditListBox extends FullBox(‘elst’, version, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 if (version==1) {
 unsigned int(64) segment_duration;
 int(64) media_time;
 } else { // version==0
 unsigned int(32) segment_duration;
 int(32) media_time;
 }
 int(16) media_rate_integer;
 int(16) media_rate_fraction = 0;
 }
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 45

	

8.6.6.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1)	
entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table	
segment_duration	 is	an	 integer	 that	specifies	 the	duration	of	 this	edit	segment	 in	units	of	 the	

timescale	in	the	Movie	Header	Box	
media_time	 is	an	 integer	containing	 the	starting	 time	within	 the	media	of	 this	edit	segment	 (in	

media	time	scale	units,	in	composition	time).	If	this	field	is	set	to	–1,	it	is	an	empty	edit.	The	last	
edit	in	a	track	shall	never	be	an	empty	edit.	Any	difference	between	the	duration	in	the	Movie	
Header	Box,	and	the	track’s	duration	is	expressed	as	an	implicit	empty	edit	at	the	end.	

media_rate	 specifies	 the	 relative	 rate	 at	 which	 to	 play	 the	 media	 corresponding	 to	 this	 edit	
segment.	 If	 this	 value	 is	 0,	 then	 the	 edit	 is	 specifying	 a	 ‘dwell’:	 the	 media	 at	 media‐time	 is	
presented	for	the	segment‐duration.	Otherwise	this	field	shall	contain	the	value	1.	

8.7 Track Data Layout Structures

8.7.1 Data Information Box

8.7.1.1 Definition

Box	Type:	 ‘dinf’	
Container:	 Media	Information	Box	(‘minf’)	or	Meta	Box	(‘meta’)	
Mandatory:	Yes	(required	within	‘minf’	box)	and	No	(optional	within	‘meta’	box)	
Quantity:	 Exactly	one	

The	data	information	box	contains	objects	that	declare	the	location	of	the	media	information	in	a	track.	

8.7.1.2 Syntax

aligned(8) class DataInformationBox extends Box(‘dinf’) {
}

8.7.2 Data Reference Box

8.7.2.1 Definition

Box	Types:	‘dref’	
Container:	Data	Information	Box	(‘dinf’)	
Mandatory:	Yes	
Quantity:	Exactly	one	

Box	Types:	‘url ‘,	‘urn ‘	
Container:	Data	Information	Box	(‘dref’)	
Mandatory:	Yes	(at	least	one	of	‘url	‘	or	‘urn	‘	shall	be	present)	
Quantity:	One	or	more	

The	 data	 reference	 object	 contains	 a	 table	 of	 data	 references	 (normally	 URLs)	 that	 declare	 the	
location(s)	 of	 the	 media	 data	 used	 within	 the	 presentation.	 The	 data	 reference	 index	 in	 the	 sample	
description	 ties	 entries	 in	 this	 table	 to	 the	 samples	 in	 the	 track.	 A	 track	 may	 be	 split	 over	 several	
sources	in	this	way.	

If	the	flag	is	set	indicating	that	the	data	is	in	the	same	file	as	this	box,	then	no	string	(not	even	an	empty	
one)	shall	be	supplied	in	the	entry	field.	

ISO/IEC 14496-12:2015(E)

46	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	 entry_count	 in	 the	 DataReferenceBox	 shall	 be	 1	 or	 greater;	 each	 DataEntryBox	 within	 the	
DataReferenceBox	shall	be	either	a	DataEntryUrnBox	or	a	DataEntryUrlBox.	

NOTE	Though	the	count	is	32	bits,	the	number	of	items	is	usually	much	fewer,	and	is	restricted	by	the	fact	that	
the	reference	index	in	the	sample	table	is	only	16	bits	

When	a	file	that	has	data	entries	with	the	flag	set	indicating	that	the	media	data	is	 in	the	same	file,	 is	
split	 into	 segments	 for	 transport,	 the	 value	 of	 this	 flag	 does	 not	 change,	 as	 the	 file	 is	 (logically)	
reassembled	after	the	transport	operation.	

8.7.2.2 Syntax

aligned(8) class DataEntryUrlBox (bit(24) flags)
 extends FullBox(‘url ’, version = 0, flags) {
 string location;
}

aligned(8) class DataEntryUrnBox (bit(24) flags)
 extends FullBox(‘urn ’, version = 0, flags) {
 string name;
 string location;
}

aligned(8) class DataReferenceBox
 extends FullBox(‘dref’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 DataEntryBox(entry_version, entry_flags) data_entry;
 }
}

8.7.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
entry_count is	an	integer	that	counts	the	actual	entries	
entry_version is	an	integer	that	specifies	the	version	of	the	entry	format	
entry_flags is	a	24‐bit	 integer	with	flags;	one	flag	is	defined	(x000001)	which	means	that	the	

media	data	is	in	the	same	file	as	the	Movie	Box	containing	this	data	reference.	
data_entry is	a	URL	or	URN	entry.	Name	is	a	URN,	and	is	required	in	a	URN	entry.	Location	is	a	

URL,	and	is	required	in	a	URL	entry	and	optional	in	a	URN	entry,	where	it	gives	a	location	to	find	
the	resource	with	the	given	name.	Each	is	a	null‐terminated	string	using	UTF‐8	characters.	If	the	
self‐contained	flag	is	set,	the	URL	form	is	used	and	no	string	is	present;	the	box	terminates	with	
the	entry‐flags	field.	The	URL	type	should	be	of	a	service	that	delivers	a	file	(e.g.	URLs	of	type	file,	
http,	 ftp	 etc.),	 and	 which	 services	 ideally	 also	 permit	 random	 access.	 Relative	 URLs	 are	
permissible	 and	 are	 relative	 to	 the	 file	 containing	 the	 Movie	 Box	 that	 contains	 this	 data	
reference.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 47

	

8.7.3 Sample Size Boxes

8.7.3.1 Definition

Box	Type:	 ‘stsz’,	‘stz2’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	variant	must	be	present	

This	box	contains	the	sample	count	and	a	table	giving	the	size	in	bytes	of	each	sample.	This	allows	the	
media	data	itself	to	be	unframed.	The	total	number	of	samples	in	the	media	is	always	indicated	in	the	
sample	count.	

There	 are	 two	 variants	 of	 the	 sample	 size	 box.	 The	 first	 variant	 has	 a	 fixed	 size	 32‐bit	 field	 for	
representing	the	sample	sizes;	it	permits	defining	a	constant	size	for	all	samples	in	a	track.	The	second	
variant	 permits	 smaller	 size	 fields,	 to	 save	 space	when	 the	 sizes	 are	 varying	 but	 small.	 One	 of	 these	
boxes	must	be	present;	the	first	version	is	preferred	for	maximum	compatibility.	

NOTE	A	sample	size	of	zero	is	not	prohibited	in	general,	but	it	must	be	valid	and	defined	for	the	coding	system,	as	
defined	by	the	sample	entry,	that	the	sample	belongs	to.	

8.7.3.2 Sample Size Box

8.7.3.2.1 Syntax

aligned(8) class SampleSizeBox extends FullBox(‘stsz’, version = 0, 0) {
 unsigned int(32) sample_size;
 unsigned int(32) sample_count;
 if (sample_size==0) {
 for (i=1; i <= sample_count; i++) {
 unsigned int(32) entry_size;
 }
 }
}

8.7.3.2.2 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
sample_size is	 integer	specifying	 the	default	 sample	size.	 If	 all	 the	samples	are	 the	 same	size,	

this	field	contains	that	size	value.	If	 this	field	is	set	to	0,	then	the	samples	have	different	sizes,	
and	those	sizes	are	stored	in	the	sample	size	table.	If	this	field	is	not	0,	it	specifies	the	constant	
sample	size,	and	no	array	follows.	

sample_count	is	an	integer	that	gives	the	number	of	samples	in	the	track;	if	sample‐size	is	0,	then	
it	is	also	the	number	of	entries	in	the	following	table.	

entry_size is	an	integer	specifying	the	size	of	a	sample,	indexed	by	its	number.	

8.7.3.3 Compact Sample Size Box

8.7.3.3.1 Syntax

aligned(8) class CompactSampleSizeBox extends FullBox(‘stz2’, version = 0, 0) {
 unsigned int(24) reserved = 0;
 unisgned int(8) field_size;
 unsigned int(32) sample_count;
 for (i=1; i <= sample_count; i++) {
 unsigned int(field_size) entry_size;
 }
}

ISO/IEC 14496-12:2015(E)

48	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.7.3.3.2 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
field_size	is	an	integer	specifying	the	size	in	bits	of	the	entries	in	the	following	table;	it	shall	

take	the	value	4,	8	or	16.	If	the	value	4	is	used,	then	each	byte	contains	two	values:		
entry[i]<<4	+	entry[i+1];	if	the	sizes	do	not	fill	an	integral	number	of	bytes,	the	last	byte	is	
padded	with	zeros.	

sample_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table	
entry_size is	an	integer	specifying	the	size	of	a	sample,	indexed	by	its	number.	

8.7.4 Sample To Chunk Box

8.7.4.1 Definition

Box	Type:	 ‘stsc’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

Samples	 within	 the	 media	 data	 are	 grouped	 into	 chunks.	 Chunks	 can	 be	 of	 different	 sizes,	 and	 the	
samples	within	a	chunk	can	have	different	sizes.	This	table	can	be	used	to	find	the	chunk	that	contains	a	
sample,	its	position,	and	the	associated	sample	description.	

The	table	is	compactly	coded.	Each	entry	gives	the	index	of	the	first	chunk	of	a	run	of	chunks	with	the	
same	characteristics.	By	subtracting	one	entry	here	from	the	previous	one,	you	can	compute	how	many	
chunks	 are	 in	 this	 run.	 You	 can	 convert	 this	 to	 a	 sample	 count	 by	 multiplying	 by	 the	 appropriate	
samples‐per‐chunk.	

8.7.4.2 Syntax

aligned(8) class SampleToChunkBox
 extends FullBox(‘stsc’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) first_chunk;
 unsigned int(32) samples_per_chunk;
 unsigned int(32) sample_description_index;
 }
}

8.7.4.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table	
first_chunk	is	an	integer	that	gives	the	index	of	the	first	chunk	in	this	run	of	chunks	that	share	

the	 same	 samples‐per‐chunk	 and	 sample‐description‐index;	 the	 index	 of	 the	 first	 chunk	 in	 a	
track	has	 the	value	1	 (the	first_chunk	 field	 in	 the	 first	 record	of	 this	box	has	 the	value	1,	
identifying	that	the	first	sample	maps	to	the	first	chunk).	

samples_per_chunk	is	an	integer	that	gives	the	number	of	samples	in	each	of	these	chunks	
sample_description_index	 is	 an	 integer	 that	 gives	 the	 index	 of	 the	 sample	 entry	 that	

describes	the	samples	in	this	chunk.	The	index	ranges	from	1	to	the	number	of	sample	entries	in	
the	Sample	Description	Box	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 49

	

8.7.5 Chunk Offset Box

8.7.5.1 Definition

Box	Type:	 ‘stco’,	‘co64’	
Container:	 Sample	Table	Box	(‘stbl’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	variant	must	be	present	

The	chunk	offset	 table	 gives	 the	 index	of	 each	chunk	 into	 the	 containing	 file.	There	are	 two	variants,	
permitting	 the	 use	 of	 32‐bit	 or	 64‐bit	 offsets.	 The	 latter	 is	 useful	 when	 managing	 very	 large	
presentations.	At	most	one	of	these	variants	will	occur	in	any	single	instance	of	a	sample	table.	

Offsets	 are	 file	 offsets,	 not	 the	offset	 into	 any	box	within	 the	 file	 (e.g.	Media	Data	Box).	This	permits	
referring	 to	media	data	 in	 files	without	any	box	structure.	 It	does	also	mean	 that	care	must	be	 taken	
when	constructing	a	self‐contained	ISO	file	with	its	metadata	(Movie	Box)	at	the	front,	as	the	size	of	the	
Movie	Box	will	affect	the	chunk	offsets	to	the	media	data.	

8.7.5.2 Syntax

aligned(8) class ChunkOffsetBox
 extends FullBox(‘stco’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) chunk_offset;
 }
}

aligned(8) class ChunkLargeOffsetBox
 extends FullBox(‘co64’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(64) chunk_offset;
 }
}

8.7.5.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table	
chunk_offset	 is	 a	 32	 or	 64	 bit	 integer	 that	 gives	 the	 offset	 of	 the	 start	 of	 a	 chunk	 into	 its	

containing	media	file.	

8.7.6 Padding Bits Box

8.7.6.1 Definition

Box	Type:	 ‘padb’	
Container:	 Sample	Table	(‘stbl’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

In	some	streams	the	media	samples	do	not	occupy	all	bits	of	the	bytes	given	by	the	sample	size,	and	are	
padded	at	the	end	to	a	byte	boundary.	In	some	cases,	it	is	necessary	to	record	externally	the	number	of	
padding	bits	used.	This	table	supplies	that	information.	

ISO/IEC 14496-12:2015(E)

50	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.7.6.2 Syntax

aligned(8) class PaddingBitsBox extends FullBox(‘padb’, version = 0, 0) {
 unsigned int(32) sample_count;
 int i;
 for (i=0; i < ((sample_count + 1)/2); i++) {
 bit(1) reserved = 0;
 bit(3) pad1;
 bit(1) reserved = 0;
 bit(3) pad2;
 }
 }

8.7.6.3 Semantics

sample_count –	counts	the	number	of	samples	in	the	track;	it	should	match	the	count	in	other	
tables	

pad1 –	a	value	from	0	to	7,	indicating	the	number	of	bits	at	the	end	of	sample	(i*2)+1.	
pad2 –	a	value	from	0	to	7,	indicating	the	number	of	bits	at	the	end	of	sample	(i*2)+2	

8.7.7 Sub-Sample Information Box

8.7.7.1 Definition

Box	Type:	 ‘subs’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Fragment	Box	(‘traf’)	
Mandatory:	No	
Quantity:	 Zero	or	more	

This	box,	named	the	Sub-Sample Information box,	is	designed	to	contain	sub‐sample	information.	

A	sub‐sample	is	a	contiguous	range	of	bytes	of	a	sample.	The	specific	definition	of	a	sub‐sample	shall	be	
supplied	for	a	given	coding	system	(e.g.	for	ISO/IEC	14496‐10,	Advanced	Video	Coding).	In	the	absence	
of	such	a	specific	definition,	this	box	shall	not	be	applied	to	samples	using	that	coding	system.	

If	subsample_count	 is	0	 for	any	entry,	 then	those	samples	have	no	subsample	 information	and	no	
array	follows.	The	table	is	sparsely	coded;	the	table	identifies	which	samples	have	sub‐sample	structure	
by	recording	the	difference	in	sample‐number	between	each	entry.	The	first	entry	in	the	table	records	
the	sample	number	of	the	first	sample	having	sub‐sample	information.	

NOTE	It	 is	 possible	 to	 combine	 subsample_priority	 and	 discardable	 such	 that	 when	
subsample_priority	 is	 smaller	 than	 a	 certain	 value,	discardable is	 set	 to	 1.	 However,	 since	 different	
systems	 may	 use	 different	 scales	 of	 priority	 values,	 to	 separate	 them	 is	 safe	 to	 have	 a	 clean	 solution	 for	
discardable	sub‐samples.	

When	more	 than	one	Sub‐Sample	 Information	box	 is	present	 in	 the	 same	container	box,	 the	value	of	
flags	shall	differ	in	each	of	these	Sub‐Sample	Information	boxes.	The	semantics	of	flags,	if	any,	shall	
be	 supplied	 for	 a	 given	 coding	 system.	 If	 flags	 have	 no	 semantics	 for	 a	 given	 coding	 system,	 the	
flags	shall	be	0.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 51

	

8.7.7.2 Syntax

aligned(8) class SubSampleInformationBox
 extends FullBox(‘subs’, version, flags) {
 unsigned int(32) entry_count;
 int i,j;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_delta;
 unsigned int(16) subsample_count;
 if (subsample_count > 0) {
 for (j=0; j < subsample_count; j++) {
 if(version == 1)
 {
 unsigned int(32) subsample_size;
 }
 else
 {
 unsigned int(16) subsample_size;
 }
 unsigned int(8) subsample_priority;
 unsigned int(8) discardable;
 unsigned int(32) codec_specific_parameters;
 }
 }
 }
}

8.7.7.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1	in	this	specification)	
entry_count is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
sample_delta is	an	integer	that	specifies	the	sample	number	of	the	sample	having	sub‐sample	

structure.	 It	 is	 coded	 as	 the	 difference	 between	 the	 desired	 sample	 number,	 and	 the	 sample	
number	indicated	in	the	previous	entry.	If	the	current	entry	is	the	first	entry,	the	value	indicates	
the	sample	number	of	the	first	sample	having	sub‐sample	information,	that	 is,	 the	value	is	the	
difference	between	the	sample	number	and	zero	(0).	

subsample_count is	an	integer	that	specifies	the	number	of	sub‐sample	for	the	current	sample.	
If	there	is	no	sub‐sample	structure,	then	this	field	takes	the	value	0.	

subsample_size is	an	integer	that	specifies	the	size,	in	bytes,	of	the	current	sub‐sample.	
subsample_priority is	 an	 integer	 specifying	 the	 degradation	 priority	 for	 each	 sub‐sample.	

Higher	 values	 of	subsample_priority,	 indicate	 sub‐samples	which	 are	 important	 to,	 and	
have	a	greater	impact	on,	the	decoded	quality.	

discardable	equal	to	0	means	that	the	sub‐sample	is	required	to	decode	the	current	sample,	
while	equal	to	1	means	the	sub‐sample	is	not	required	to	decode	the	current	sample	but	may	be	
used	for	enhancements,	e.g.,	the	sub‐sample	consists	of	supplemental	enhancement	information	
(SEI)	messages.	

codec_specific_parameters	is	defined	by	the	codec	in	use.	If	no	such	definition	is	available,	
this	field	shall	be	set	to	0.	

8.7.8 Sample Auxiliary Information Sizes Box

8.7.8.1 Definition

Box	Type:	 ‘saiz’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Fragment	Box	('traf')	
Mandatory:	No	
Quantity:	 Zero	or	More	

Per‐sample	sample	auxiliary	information	may	be	stored	anywhere	in	the	same	file	as	the	sample	data	
itself;	 for	 self‐contained	 media	 files,	 this	 is	 typically	 in	 a	 MediaData	 box	 or	 a	 box	 from	 a	 derived	

ISO/IEC 14496-12:2015(E)

52	 ©	ISO/IEC	2015	–	All	rights	reserved

	

specification.	It	is	stored	either	(a)	in	multiple	chunks,	with	the	number	of	samples	per	chunk,	as	well	as	
the	number	of	chunks,	matching	the	chunking	of	the	primary	sample	data	or	(b)	in	a	single	chunk	for	all	
the	samples	 in	a	movie	sample	 table	 (or	a	movie	 fragment).	The	Sample	Auxiliary	 Information	 for	all	
samples	 contained	 within	 a	 single	 chunk	 (or	 track	 run)	 is	 stored	 contiguously	 (similarly	 to	 sample	
data).	

Sample	Auxiliary	Information,	when	present,	is	always	stored	in	the	same	file	as	the	samples	to	which	it	
relates	as	they	share	the	same	data	reference	(‘dref’)	structure.	However,	this	data	may	be	located	
anywhere	within	this	 file,	using	auxiliary	 information	offsets	(‘saio’)	 to	 indicate	the	 location	of	 the	
data.	

Whether	sample	auxiliary	information	is	permitted	or	required	may	be	specified	by	the	brands	or	the	
coding	 format	 in	 use.	 The	 format	 of	 the	 sample	 auxiliary	 information	 is	 determined	 by	
aux_info_type.	 If	 aux_info_type	 and	 aux_info_type_parameter	 are	 omitted	 then	 the	
implied	value	of	aux_info_type	 is	either	(a)	 in	 the	case	of	 transformed	content,	such	as	protected	
content,	 the	scheme_type	 included	 in	 the	Protection	 Scheme	 Information	box	 or	 otherwise	 (b)	 the	
sample	 entry	 type.	 The	 default	 value	 of	 the	 aux_info_type_parameter	 is	 0.	 Some	 values	 of	
aux_info_type	 may	 be	 restricted	 to	 be	 used	 only	 with	 particular	 track	 types.	 A	 track	 may	 have	
multiple	 streams	 of	 sample	 auxiliary	 information	 of	 different	 types.	 The	 types	 are	 registered	 at	 the	
registration	authority.	

While	 aux_info_type	 determines	 the	 format	 of	 the	 auxiliary	 information,	 several	 streams	 of	
auxiliary	 information	 having	 the	 same	 format	 may	 be	 used	 when	 their	 value	 of	
aux_info_type_parameter	 differs.	 The	 semantics	 of	 aux_info_type_parameter	 for	 a	
particular	 aux_info_type	 value	 must	 be	 specified	 along	 with	 specifying	 the	 semantics	 of	 the	
particular	aux_info_type	value	and	the	implied	auxiliary	information	format.	

This	box	provides	the	size	of	the	auxiliary	information	for	each	sample.	For	each	instance	of	 this	box,	
there	must	 be	 a	matching	SampleAuxiliaryInformationOffsetsBox	with	 the	 same	 values	 of	
aux_info_type	 and	 aux_info_type_parameter,	 providing	 the	 offset	 information	 for	 this	
auxiliary	information.	

NOTE	 For	discussions	on	the	use	of	sample	auxiliary	information	versus	other	mechanisms,	see	Annex	C.8.	

8.7.8.2 Syntax

aligned(8) class SampleAuxiliaryInformationSizesBox
 extends FullBox(‘saiz’, version = 0, flags)
{
 if (flags & 1) {
 unsigned int(32) aux_info_type;
 unsigned int(32) aux_info_type_parameter;
 }
 unsigned int(8) default_sample_info_size;
 unsigned int(32) sample_count;
 if (default_sample_info_size == 0) {
 unsigned int(8) sample_info_size[sample_count];
 }
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 53

	

8.7.8.3 Semantics

aux_info_type	is	an	integer	that	identifies	the	type	of	the	sample	auxiliary	information.	At	most	
one	 occurrence	 of	 this	 box	 with	 the	 same	 values	 for	 aux_info_type	 and	
aux_info_type_parameter	shall	exist	in	the	containing	box.	

aux_info_type_parameter	 identifies	 the	 “stream”	 of	 auxiliary	 information	 having	 the	 same	
value	 of	 aux_info_type	 and	 associated	 to	 the	 same	 track.	 The	 semantics	 of	
aux_info_type_parameter	are	determined	by	the	value	of	aux_info_type.	

default_sample_info_size	 is	an	integer	specifying	the	sample	auxiliary	information	size	for	
the	case	where	all	the	indicated	samples	have	the	same	sample	auxiliary	information	size.	If	the	
size	varies	then	this	field	shall	be	zero.	

sample_count	 is	an	 integer	 that	gives	 the	number	of	samples	 for	which	a	size	 is	defined.	For	a	
Sample	 Auxiliary	 Information	 Sizes	 box	 appearing	 in	 the	 Sample	 Table	 Box	 this	must	 be	 the	
same	as,	or	less	than,	the	sample_count	within	the	Sample	Size	Box	or	Compact	Sample	Size	
Box.	For	a	Sample	Auxiliary	Information	Sizes	box	appearing	in	a	Track	Fragment	box	this	must	
be	the	same	as,	or	less	than,	the	sum	of	the	sample_count	entries	within	the	Track	Fragment	
Run	 boxes	 of	 the	 Track	 Fragment.	 If	 this	 is	 less	 than	 the	 number	 of	 samples,	 then	 auxiliary	
information	 is	supplied	 for	 the	 initial	 samples,	and	 the	remaining	samples	have	no	associated	
auxiliary	information.	

sample_info_size	gives	the	size	of	the	sample	auxiliary	information	in	bytes.	This	may	be	zero	
to	indicate	samples	with	no	associated	auxiliary	information.	

8.7.9 Sample Auxiliary Information Offsets Box

8.7.9.1 Definition

Box	Type:	 ‘saio’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Fragment	Box	('traf')	
Mandatory:	No	
Quantity:	 Zero	or	More	

For	 an	 introduction	 to	 sample	 auxiliary	 information,	 see	 the	 definition	 of	 the	 Sample	 Auxiliary	
Information	Size	Box.	

This	box	provides	the	position	information	for	the	sample	auxiliary	information,	in	a	way	similar	to	the	
chunk	offsets	for	sample	data.	

8.7.9.2 Syntax

aligned(8) class SampleAuxiliaryInformationOffsetsBox
 extends FullBox(‘saio’, version, flags)
{
 if (flags & 1) {
 unsigned int(32) aux_info_type;
 unsigned int(32) aux_info_type_parameter;
 }
 unsigned int(32) entry_count;
 if (version == 0) {
 unsigned int(32) offset[entry_count];
 }
 else {
 unsigned int(64) offset[entry_count];
 }
}

ISO/IEC 14496-12:2015(E)

54	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.7.9.3 Semantics

aux_info_type	 and	 aux_info_type_parameter are	 defined	 as	 in	 the	
SampleAuxiliaryInformationSizesBox

entry_count	 gives	 the	 number	 of	 entries	 in	 the	 following	 table.	 For	 a	 Sample	 Auxiliary	
Information	Offsets	box	 appearing	 in	 a	 Sample	Table	Box	 this	must	be	equal	 to	one	or	 to	 the	
value	 of	 the	 entry_count	 field	 in	 the	 Chunk	 Offset	 Box	 or	 Chunk	 Large	 Offset	 Box.	 For	 a	
Sample	Auxiliary	Information	Offsets	Box	appearing	in	a	Track	Fragment	box,	this	must	be	equal	
to	one	or	to	the	number	of	Track	Fragment	Run	boxes	in	the	Track	Fragment	Box.	

offset	gives	the	position	in	the	file	of	the	Sample	Auxiliary	Information	for	each	Chunk	or	Track	
Fragment	Run.	If	entry_count	is	one,	then	the	Sample	Auxiliary	Information	for	all	Chunks	or	
Runs	is	contiguous	in	the	file	in	chunk	or	run	order.	When	in	the	Sample	Table	Box,	the	offsets	
are	absolute.	In	a	track	fragment	box,	this	value	is	relative	to	the	base	offset	established	by	the	
track	fragment	header	box	(‘tfhd’)	in	the	same	track	fragment	(see	8.8.14).	

8.8 Movie Fragments

8.8.1 Movie Extends Box

8.8.1.1 Definition

Box	Type:	 ‘mvex’	
Container:	 Movie	Box	(‘moov’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	warns	readers	that	there	might	be	Movie	Fragment	Boxes	in	this	file.	To	know	of	all	samples	in	
the	 tracks,	 these	Movie	 Fragment	 Boxes	must	 be	 found	 and	 scanned	 in	 order,	 and	 their	 information	
logically	added	to	that	found	in	the	Movie	Box.	

There	is	a	narrative	introduction	to	Movie	Fragments	in	Annex	A.	

8.8.1.2 Syntax

aligned(8) class MovieExtendsBox extends Box(‘mvex’){
}

8.8.2 Movie Extends Header Box

8.8.2.1 Definition

Box	Type:	 ‘mehd’	
Container:	 Movie	Extends	Box(‘mvex’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 Movie	 Extends	 Header	 is	 optional,	 and	 provides	 the	 overall	 duration,	 including	 fragments,	 of	 a	
fragmented	movie.	If	this	box	is	not	present,	the	overall	duration	must	be	computed	by	examining	each	
fragment.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 55

	

8.8.2.2 Syntax

aligned(8) class MovieExtendsHeaderBox extends FullBox(‘mehd’, version, 0) {
 if (version==1) {
 unsigned int(64) fragment_duration;
 } else { // version==0
 unsigned int(32) fragment_duration;
 }
}

8.8.2.3 Semantics

fragment_duration	 is	 an	 integer	 that	declares	 length	 of	 the	presentation	of	 the	whole	movie	
including	fragments	(in	the	timescale	indicated	in	the	Movie	Header	Box).	The	value	of	this	field	
corresponds	 to	 the	duration	of	 the	 longest	 track,	 including	movie	 fragments.	 If	 an	MP4	 file	 is	
created	 in	 real‐time,	 such	 as	 used	 in	 live	 streaming,	 it	 is	 not	 likely	 that	 the	
fragment_duration	is	known	in	advance	and	this	box	may	be	omitted.	

8.8.3 Track Extends Box

8.8.3.1 Definition

Box	Type:	 ‘trex’	
Container:	 Movie	Extends	Box	(‘mvex’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	for	each	track	in	the	Movie	Box	

This	 sets	 up	 default	 values	 used	 by	 the	movie	 fragments.	 By	 setting	 defaults	 in	 this	 way,	 space	 and	
complexity	can	be	saved	in	each	Track	Fragment	Box.	

The	sample	flags	field	in	sample	fragments	(default_sample_flags	here	and	in	a	Track	Fragment	
Header	Box,	and	sample_flags	and	first_sample_flags	in	a	Track	Fragment	Run	Box)	is	coded	
as	a	32‐bit	value.	It	has	the	following	structure:	

bit(4) reserved=0;
unsigned int(2) is_leading;
unsigned int(2) sample_depends_on;
unsigned int(2) sample_is_depended_on;
unsigned int(2) sample_has_redundancy;
bit(3) sample_padding_value;
bit(1) sample_is_non_sync_sample;
unsigned int(16) sample_degradation_priority;

The	 is_leading,	 sample_depends_on,	 sample_is_depended_on	 and	
sample_has_redundancy	 values	 are	 defined	 as	 documented	 in	 the	 Independent	 and	 Disposable	
Samples	Box.	

The	 flag	sample_is_non_sync_sample	 provides	 the	 same	 information	 as	 the	 sync	 sample	 table	
[8.6.2].	 When	 this	 value	 is	 set	 0	 for	 a	 sample,	 it	 is	 the	 same	 as	 if	 the	 sample	 were	 not	 in	 a	 movie	
fragment	and	marked	with	an	entry	 in	 the	sync	sample	 table	 (or,	 if	all	samples	are	sync	samples,	 the	
sync	sample	table	were	absent).	

The	 sample_padding_value	 is	 defined	 as	 for	 the	 padding	 bits	 table.	 The	
sample_degradation_priority	is	defined	as	for	the	degradation	priority	table.	

ISO/IEC 14496-12:2015(E)

56	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.8.3.2 Syntax

aligned(8) class TrackExtendsBox extends FullBox(‘trex’, 0, 0){
 unsigned int(32) track_ID;
 unsigned int(32) default_sample_description_index;
 unsigned int(32) default_sample_duration;
 unsigned int(32) default_sample_size;
 unsigned int(32) default_sample_flags;
}

8.8.3.3 Semantics

track_id identifies	the	track;	this	shall	be	the	track	ID	of	a	track	in	the	Movie	Box	
default_	these	fields	set	up	defaults	used	in	the	track	fragments.	

8.8.4 Movie Fragment Box

8.8.4.1 Definition

Box	Type:	 ‘moof’	
Container:	 File	
Mandatory:	No	
Quantity:	 Zero	or	more	

The	 movie	 fragments	 extend	 the	 presentation	 in	 time.	 They	 provide	 the	 information	 that	 would	
previously	have	been	in	the	Movie	Box.	The	actual	samples	are	in	Media	Data	Boxes,	as	usual,	if	they	are	
in	 the	 same	 file.	 The	 data	 reference	 index	 is	 in	 the	 sample	 description,	 so	 it	 is	 possible	 to	 build	
incremental	presentations	where	the	media	data	is	in	files	other	than	the	file	containing	the	Movie	Box.	

The	Movie	 Fragment	 Box	 is	 a	 top‐level	 box,	 (i.e.	 a	 peer	 to	 the	Movie	 Box	 and	Media	 Data	 boxes).	 It	
contains	a	Movie	Fragment	Header	Box,	and	then	one	or	more	Track	Fragment	Boxes.	

NOTE	 There	is	no	requirement	that	any	particular	movie	fragment	extend	all	tracks	present	in	the	movie	
header,	 and	 there	 is	 no	 restriction	 on	 the	 location	 of	 the	media	 data	 referred	 to	 by	 the	movie	 fragments.	
However,	derived	specifications	may	make	such	restrictions.	

8.8.4.2 Syntax

aligned(8) class MovieFragmentBox extends Box(‘moof’){
}

8.8.5 Movie Fragment Header Box

8.8.5.1 Definition

Box	Type:	 ‘mfhd’	
Container:	 Movie	Fragment	Box	('moof')	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	 movie	 fragment	 header	 contains	 a	 sequence	 number,	 as	 a	 safety	 check.	 The	 sequence	 number	
usually	starts	at	1	and	increases	for	each	movie	fragment	in	the	file,	in	the	order	in	which	they	occur.	
This	allows	 readers	 to	verify	 integrity	of	 the	sequence	 in	environments	where	undesired	re‐ordering	
might	occur.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 57

	

8.8.5.2 Syntax

aligned(8) class MovieFragmentHeaderBox
 extends FullBox(‘mfhd’, 0, 0){
 unsigned int(32) sequence_number;
}

8.8.5.3 Semantics

sequence_number a	number	associated	with	this	fragment	

8.8.6 Track Fragment Box

8.8.6.1 Definition

Box	Type:	 ‘traf’	
Container:	 Movie	Fragment	Box	('moof')	
Mandatory:	No	
Quantity:	 Zero	or	more	

Within	the	movie	fragment	there	is	a	set	of	track	fragments,	zero	or	more	per	track.	The	track	fragments	
in	turn	contain	zero	or	more	track	runs,	each	of	which	document	a	contiguous	run	of	samples	for	that	
track.	Within	these	structures,	many	fields	are	optional	and	can	be	defaulted.	

It	 is	possible	 to	add	 'empty	 time'	 to	a	 track	using	 these	structures,	as	well	as	adding	samples.	Empty	
inserts	can	be	used	in	audio	tracks	doing	silence	suppression,	for	example.	

8.8.6.2 Syntax

aligned(8) class TrackFragmentBox extends Box(‘traf’){
}

8.8.7 Track Fragment Header Box

8.8.7.1 Definition

Box	Type:	 ‘tfhd’	
Container:	 Track	Fragment	Box	('traf')	
Mandatory:	Yes	
Quantity:	 Exactly	one	

Each	movie	fragment	can	add	zero	or	more	fragments	to	each	track;	and	a	track	fragment	can	add	zero	
or	more	contiguous	runs	of	samples.	The	track	fragment	header	sets	up	information	and	defaults	used	
for	those	runs	of	samples.	

The	base‐data‐offset,	if	explicitly	provided,	is	a	data	offset	that	is	identical	to	a	chunk	offset	in	the	Chunk	
Offset	 Box,	 i.e.	 applying	 to	 the	 complete	 file	 (e.g.	 starting	 with	 a	 file‐type	 box	 and	 movie	 box).	 In	
circumstances	when	the	complete	file	does	not	exist	or	its	size	is	unknown,	it	may	be	impossible	to	use	
an	explicit	base‐data‐offset;	then,	offsets	need	to	be	established	relative	to	the	movie	fragment.	

The	following	flags	are	defined	in	the	tf_flags:	

0x000001	base‐data‐offset‐present:	 indicates	 the	 presence	 of	 the	 base‐data‐offset	 field.	 This	
provides	an	explicit	anchor	for	the	data	offsets	in	each	track	run	(see	below).	If	not	provided	and	
if	 the	 default‐base‐is‐moof	 flag	 is	 not	 set,	 the	 base‐data‐offset	 for	 the	 first	 track	 in	 the	movie	

ISO/IEC 14496-12:2015(E)

58	 ©	ISO/IEC	2015	–	All	rights	reserved

	

fragment	is	 the	position	of	the	first	byte	of	the	enclosing	Movie	Fragment	Box,	and	for	second	
and	 subsequent	 track	 fragments,	 the	 default	 is	 the	 end	 of	 the	 data	 defined	 by	 the	 preceding	
track	 fragment.	 Fragments	 'inheriting'	 their	 offset	 in	 this	 way	 must	 all	 use	 the	 same	 data‐
reference	(i.e.,	the	data	for	these	tracks	must	be	in	the	same	file)	

0x000002	sample‐description‐index‐present:	indicates	the	presence	of	this	field,	which	over‐rides,	
in	this	fragment,	the	default	set	up	in	the	Track	Extends	Box.	

0x000008	default‐sample‐duration‐present	
0x000010	default‐sample‐size‐present	
0x000020	default‐sample‐flags‐present	
0x010000	duration‐is‐empty:	 this	 indicates	 that	 the	 duration	 provided	 in	 either	 default‐sample‐

duration,	 or	 by	 the	default‐duration	 in	 the	Track	Extends	Box,	 is	 empty,	 i.e.	 that	 there	are	no	
samples	for	this	time	interval.	It	is	an	error	to	make	a	presentation	that	has	both	edit	lists	in	the	
Movie	Box,	and	empty‐duration	fragments.	

0x020000	default‐base‐is‐moof:	 if	 base‐data‐offset‐present	 is	 1,	 this	 flag	 is	 ignored.	 If	 base‐data‐
offset‐present	 is	 zero,	 this	 indicates	 that	 the	 base‐data‐offset	 for	 this	 track	 fragment	 is	 the	
position	of	the	first	byte	of	the	enclosing	Movie	Fragment	Box.	Support	for	the	default‐base‐is‐
moof	 flag	 is	 required	under	 the	 ‘iso5’	brand,	and	 it	 shall	not	be	used	 in	brands	or	compatible	
brands	earlier	than	iso5.	

NOTE	 The	use	of	the	default‐base‐is‐moof	flag	breaks	the	compatibility	to	earlier	brands	of	the	file	format,	because	it	
sets	the	anchor	point	for	offset	calculation	differently	than	earlier.	Therefore,	the	default‐base‐is‐moof	flag	cannot	be	
set	when	earlier	brands	are	included	in	the	File	Type	box.	

8.8.7.2 Syntax

aligned(8) class TrackFragmentHeaderBox
 extends FullBox(‘tfhd’, 0, tf_flags){
 unsigned int(32) track_ID;
 // all the following are optional fields
 unsigned int(64) base_data_offset;
 unsigned int(32) sample_description_index;
 unsigned int(32) default_sample_duration;
 unsigned int(32) default_sample_size;
 unsigned int(32) default_sample_flags
}

8.8.7.3 Semantics

base_data_offset the	base	offset	to	use	when	calculating	data	offsets	

8.8.8 Track Fragment Run Box

8.8.8.1 Definition

Box	Type:	 ‘trun’	
Container:	 Track	Fragment	Box	('traf')	
Mandatory:	No	
Quantity:	 Zero	or	more	

Within	the	Track	Fragment	Box,	there	are	zero	or	more	Track	Run	Boxes.	If	the	duration‐is‐empty	flag	is	
set	in	the	tf_flags,	there	are	no	track	runs.	A	track	run	documents	a	contiguous	set	of	samples	for	a	
track.	

The	number	of	optional	fields	is	determined	from	the	number	of	bits	set	in	the	lower	byte	of	the	flags,	
and	 the	 size	 of	 a	 record	 from	 the	 bits	 set	 in	 the	 second	 byte	 of	 the	 flags.	 This	 procedure	 	 shall	 be	
followed,	to	allow	for	new	fields	to	be	defined.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 59

	

If	 the	 data‐offset	 is	 not	 present,	 then	 the	 data	 for	 this	 run	 starts	 immediately	 after	 the	 data	 of	 the	
previous	run,	or	at	the	base‐data‐offset	defined	by	the	track	fragment	header	if	this	is	the	first	run	in	a	
track	fragment,	If	the	data‐offset	is	present,	it	is	relative	to	the	base‐data‐offset	established	in	the	track	
fragment	header.	

The	following	flags	are	defined:	

0x000001	 data‐offset‐present.	
0x000004	 first‐sample‐flags‐present;	this	over‐rides	the	default	flags	for	the	first	sample	only.	This	

makes	it	possible	to	record	a	group	of	frames	where	the	first	is	a	key	and	the	rest	are	difference	
frames,	without	supplying	explicit	flags	for	every	sample.	If	this	flag	and	field	are	used,	sample‐
flags	shall	not	be	present.	

0x000100	 sample‐duration‐present:	indicates	that	each	sample	has	its	own	duration,	otherwise	the	
default	is	used.	

0x000200	 sample‐size‐present:	each	sample	has	its	own	size,	otherwise	the	default	is	used.	
0x000400	 sample‐flags‐present;	each	sample	has	its	own	flags,	otherwise	the	default	is	used.	
0x000800	 sample‐composition‐time‐offsets‐present;	 each	 sample	 has	 a	 composition	 time	 offset	

(e.g.	as	used	for	I/P/B	video	in	MPEG).	

The	composition	offset	values	in	the	composition	time‐to‐sample	box	and	in	the	track	run	box	may	be	
signed	or	unsigned.	The	recommendations	given	in	the	composition	time‐to‐sample	box	concerning	the	
use	of	signed	composition	offsets	also	apply	here.	

8.8.8.2 Syntax

aligned(8) class TrackRunBox
 extends FullBox(‘trun’, version, tr_flags) {
 unsigned int(32) sample_count;
 // the following are optional fields
 signed int(32) data_offset;
 unsigned int(32) first_sample_flags;
 // all fields in the following array are optional
 {
 unsigned int(32) sample_duration;
 unsigned int(32) sample_size;
 unsigned int(32) sample_flags
 if (version == 0)
 { unsigned int(32) sample_composition_time_offset; }
 else
 { signed int(32) sample_composition_time_offset; }
 }[sample_count]
}

8.8.8.3 Semantics

sample_count the	number	of	samples	being	added	 in	 this	run;	also	 the	number	of	 rows	 in	 the	
following	table	(the	rows	can	be	empty)	

data_offset	is	added	to	the	implicit	or	explicit	data_offset	established	in	the	track	fragment	
header.	

first_sample_flags	provides	a	set	of	flags	for	the	first	sample	only	of	this	run.	

ISO/IEC 14496-12:2015(E)

60	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.8.9 Movie Fragment Random Access Box

8.8.9.1 Definition

Box	Type:	 ‘mfra’	
Container:	 File	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 Movie	 Fragment	 Random	 Access	 Box	 (‘mfra’)	 provides	 a	 table	 which	 may	 assist	 readers	 in	
finding	sync	samples	in	a	file	using	movie	fragments.	It	contains	a	track	fragment	random	access	box	for	
each	 track	 for	which	 information	 is	provided	 (which	may	not	be	all	 tracks).	 It	 is	usually	placed	at	or	
near	the	end	of	the	file;	the	last	box	within	the	Movie	Fragment	Random	Access	Box	provides	a	copy	of	
the	length	field	from	the	Movie	Fragment	Random	Access	Box.	Readers	may	attempt	to	find	this	box	by	
examining	 the	 last	 32	bits	 of	 the	 file,	 or	 scanning	 backwards	 from	 the	 end	 of	 the	 file	 for	 a	 Movie	
Fragment	 Random	 Access	 Offset	 Box	 and	 using	 the	 size	 information	 in	 it,	 to	 see	 if	 that	 locates	 the	
beginning	of	a	Movie	Fragment	Random	Access	Box.	

This	box	provides	only	a	hint	as	to	where	sync	samples	are;	the	movie	fragments	themselves	are	
definitive.	It	is	recommended	that	readers	take	care	in	both	locating	and	using	this	box	as	modifications	
to	the	file	after	it	was	created	may	render	either	the	pointers,	or	the	declaration	of	sync	samples,	
incorrect.	

8.8.9.2 Syntax

aligned(8) class MovieFragmentRandomAccessBox
 extends Box(‘mfra’)
{
}

8.8.10 Track Fragment Random Access Box

8.8.10.1 Definition

Box	Type:	 ‘tfra’	
Container:	 Movie	Fragment	Random	Access	Box	(‘mfra’)	
Mandatory:	No	
Quantity:	 Zero	or	one	per	track	

Each	entry	contains	the	location	and	the	presentation	time	of	the	sync	sample.	Note	that	not	every	sync	
sample	in	the	track	needs	to	be	listed	in	the	table.	

The	 absence	 of	 this	 box	 does	 not	 mean	 that	 all	 the	 samples	 are	 sync	 samples.	 Random	 access	
information	in	the	‘trun’,	‘traf’	and	‘trex’	shall	be	set	appropriately	regardless	of	the	presence	
of	this	box.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 61

	

8.8.10.2 Syntax

aligned(8) class TrackFragmentRandomAccessBox
 extends FullBox(‘tfra’, version, 0) {
 unsigned int(32) track_ID;
 const unsigned int(26) reserved = 0;
 unsigned int(2) length_size_of_traf_num;
 unsigned int(2) length_size_of_trun_num;
 unsigned int(2) length_size_of_sample_num;
 unsigned int(32) number_of_entry;
 for(i=1; i <= number_of_entry; i++){
 if(version==1){
 unsigned int(64) time;
 unsigned int(64) moof_offset;
 }else{
 unsigned int(32) time;
 unsigned int(32) moof_offset;
 }
 unsigned int((length_size_of_traf_num+1) * 8) traf_number;
 unsigned int((length_size_of_trun_num+1) * 8) trun_number;
 unsigned int((length_size_of_sample_num+1) * 8) sample_number;
 }
}

8.8.10.3 Semantics

track_ID is	an	integer	identifying	the	track_ID.	
length_size_of_traf_num indicates	the	length	in	byte	of	the	traf_number	field	minus	one.	
length_size_of_trun_num indicates	the	length	in	byte	of	the	trun_number	field	minus	one.	
length_size_of_sample_num indicates	the	length	in	byte	of	the	sample_number	field	minus	

one.	
number_of_entry is	an	integer	that	gives	the	number	of	the	entries	for	this	track.	If	this	value	is	

zero,	it	indicates	that	every	sample	is	a	sync	sample	and	no	table	entry	follows.
time is	 32	 or	 64	 bits	 integer	 that	 indicates	 the	 presentation	 time	 of	 the	 sync	 sample	 in	 units	

defined	in	the	‘mdhd’	of	the	associated	track.	
moof_offset is	32	or	64	bits	integer	that	gives	the	offset	of	the	‘moof’	used	in	this	entry.	Offset	

is	the	byte‐offset	between	the	beginning	of	the	file	and	the	beginning	of	the	‘moof’.	
traf_number	indicates	the	‘traf’	number	that	contains	the	sync	sample.	The	number	ranges	

from	1	(the	first	‘traf’ is	numbered	1)	in	each	‘moof’.	
trun_number	indicates	the	‘trun’	number	that	contains	the	sync	sample.	The	number	ranges	

from	1	in	each	‘traf’.	
sample_number	 indicates	the	sample	number	of	 the	sync	sample.	The	number	ranges	 from	1	 in	

each	‘trun’.
8.8.11 Movie Fragment Random Access Offset Box

8.8.11.1 Definition

Box	Type:	 ‘mfro’	
Container:	 Movie	Fragment	Random	Access	Box	(‘mfra’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	Movie	Fragment	Random	Access	Offset	Box	provides	a	copy	of	the	length	field	from	the	enclosing	
Movie	Fragment	Random	Access	Box.	It	is	placed	last	within	that	box,	so	that	the	size	field	is	also	last	in	
the	enclosing	Movie	Fragment	Random	Access	Box.	When	the	Movie	Fragment	Random	Access	Box	 is	
also	last	in	the	file	this	permits	its	easy	location.	The	size	field	here	must	be	correct.	However,	neither	
the	presence	of	the	Movie	Fragment	Random	Access	Box,	nor	its	placement	last	in	the	file,	are	assured.	

ISO/IEC 14496-12:2015(E)

62	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.8.11.2 Syntax

aligned(8) class MovieFragmentRandomAccessOffsetBox
 extends FullBox(‘mfro’, version, 0) {
 unsigned int(32) size;
}

8.8.11.3 Semantics

size is	an	integer	gives	the	number	of	bytes	of	the	enclosing	‘mfra’	box.	This	field	is	placed	at	
the	 last	of	 the	enclosing	box	 to	 assist	 readers	 scanning	 from	 the	end	of	 the	 file	 in	 finding	 the	
‘mfra’	box.	

8.8.12 Track fragment decode time

8.8.12.1 Definition

Box	Type:	 `tfdt’	
Container:	 Track	Fragment	box	(‘traf’)	
Mandatory:	 No	
Quantity:	 Zero	or	one	

The	Track	Fragment	Base	Media	Decode	Time	Box	provides	the	absolute	decode	time,	measured	on	the	
media	 timeline,	 of	 the	 first	 sample	 in	 decode	 order	 in	 the	 track	 fragment.	 This	 can	 be	 useful,	 for	
example,	when	performing	random	access	in	a	file;	it	is	not	necessary	to	sum	the	sample	durations	of	all	
preceding	samples	in	previous	fragments	to	find	this	value	(where	the	sample	durations	are	the	deltas	
in	the	Decoding	Time	to	Sample	Box	and	the	sample_durations	in	the	preceding	track	runs).	

The	 Track	 Fragment	 Base	 Media	 Decode	 Time	 Box,	 if	 present,	 shall	 be	 positioned	 after	 the	 Track	
Fragment	Header	Box	and	before	the	first	Track	Fragment	Run	box.	

NOTE	 The	decode	timeline	is	a	media	timeline,	established	before	any	explicit	or	implied	mapping	of	media	time	to	
presentation	time,	for	example	by	an	edit	list	or	similar	structure.	

If	the	time	expressed	in	the	track	fragment	decode	time	(‘tfdt’)	box	exceeds	the	sum	of	the	durations	of	
the	 samples	 in	 the	 preceding	 movie	 and	 movie	 fragments,	 then	 the	 duration	 of	 the	 last	 sample	
preceding	this	track	fragment	is	extended	such	that	the	sum	now	equals	the	time	given	in	this	box.	In	
this	way,	it	is	possible	to	generate	a	fragment	containing	a	sample	when	the	time	of	the	next	sample	is	
not	yet	known.	

In	particular,	an	empty	track	fragment	(with	no	samples,	but	with	a	track	fragment	decode	time	box)	
may	be	used	to	establish	the	duration	of	the	last	sample.	

8.8.12.2 Syntax

aligned(8) class TrackFragmentBaseMediaDecodeTimeBox
 extends FullBox(‘tfdt’, version, 0) {
 if (version==1) {
 unsigned int(64) baseMediaDecodeTime;
 } else { // version==0
 unsigned int(32) baseMediaDecodeTime;
 }
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 63

	

8.8.12.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	(0	or	1	in	this	specification).	
baseMediaDecodeTime is	 an	 integer	 equal	 to	 the	 sum	 of	 the	 decode	 durations	 of	 all	 earlier	

samples	in	the	media,	expressed	in	the	media's	timescale.	It	does	not	include	the	samples	added	
in	the	enclosing	track	fragment.	

8.8.13 Level Assignment Box

8.8.13.1 Definition

Box	Type:	 `leva’	
Container:	 Movie	Extends	Box	(`mvex’)	
Mandatory:	 No	
Quantity:	 Zero	or	one	

Levels	specify	subsets	of	 the	 file.	Samples	mapped	to	 level	n	may	depend	on	any	samples	of	 levels	m,	
where	m	<=	n,	and	shall	not	depend	on	any	samples	of	levels	p,	where	p	>	n.	For	example,	levels	can	be	
specified	according	to	temporal	level	(e.g.,	temporal_id	of	SVC	or	MVC).	

Levels	cannot	be	specified	for	the	initial	movie.	When	the	Level	Assignment	box	is	present,	it	applies	to	
all	movie	fragments	subsequent	to	the	initial	movie.	

For	 the	 context	 of	 the	 Level	 Assignment	 box,	 a	 fraction	 is	 defined	 to	 consist	 of	 one	 or	 more	 Movie	
Fragment	boxes	and	the	associated	Media	Data	boxes,	possibly	including	only	an	initial	part	of	the	last	
Media	Data	Box.	Within	a	fraction,	data	for	each	level	shall	appear	contiguously.	Data	for	levels	within	a	
fraction	shall	appear	in	increasing	order	of	level	value.	All	data	in	a	fraction	shall	be	assigned	to	levels.	

NOTE	 In	 the	 context	 of	 DASH	 (ISO/IEC	 23009‐1),	 each	 subsegment	 indexed	within	 a	 Subsegment	 Index	 box	 is	 a	
fraction.	

The	 Level	 Assignment	 box	 provides	 a	mapping	 from	 features,	 such	 as	 scalability	 layers,	 to	 levels.	 A	
feature	can	be	specified	through	a	track,	a	sub‐track	within	a	track,	or	a	sample	grouping	of	a	track.	

When	 padding_flag	 is	 equal	 to	 1	 this	 indicates	 that	 a	 conforming	 fraction	 can	 be	 formed	 by	
concatenating	any	positive	integer	number	of	levels	within	a	fraction	and	padding	the	last	Media	Data	box	
by	zero	bytes	up	to	the	full	size	that	 is	 indicated	in	the	header	of	the	last	Media	Data	box.	For	example,	
padding_flag	can	be	set	equal	to	1	when	the	following	conditions	are	true:	

 Each	 fraction	 contains	 two	 or	more	AVC,	 SVC,	 or	MVC	 [ISO/IEC	 14496‐15]	 tracks	 of	 the	 same	
video	bitstream.	

 The	samples	 for	each	track	of	a	 fraction	are	contiguous	and	 in	decoding	order	 in	a	Media	Data	
box.	

 The	 samples	 of	 the	 first	 AVC,	 SVC,	 or	MVC	 level	 contain	 extractor	NAL	 units	 for	 including	 the	
video	coding	NAL	units	from	the	other	levels	of	the	same	fraction.	

ISO/IEC 14496-12:2015(E)

64	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.8.13.2 Syntax

aligned(8) class LevelAssignmentBox extends FullBox(‘leva’, 0, 0)
{
 unsigned int(8) level_count;
 for (j=1; j <= level_count; j++) {
 unsigned int(32) track_id;
 unsigned int(1) padding_flag;
 unsigned int(7) assignment_type;
 if (assignment_type == 0) {
 unsigned int(32) grouping_type;
 }
 else if (assignment_type == 1) {
 unsigned int(32) grouping_type;
 unsigned int(32) grouping_type_parameter;
 }
 else if (assignment_type == 2) {} // no further syntax elements needed
 else if (assignment_type == 3) {} // no further syntax elements needed
 else if (assignment_type == 4) {
 unsigned int(32) sub_track_id;
 }
 // other assignment_type values are reserved
 }
}

8.8.13.3 Semantics

level_count	specifies	the	number	of	levels	each	fraction	is	grouped	into.	level_count	shall	be	
greater	than	or	equal	to	2.	

track_id	for	loop	entry	j	specifies	the	track	identifier	of	the	track	assigned	to	level	j.	
padding_flag	equal	to	1	indicates	that	a	conforming	fraction	can	be	formed	by	concatenating	any	

positive	integer	number	of	levels	within	a	fraction	and	padding	the	last	Media	Data	box	by	zero	
bytes	up	to	the	full	size	that	is	indicated	in	the	header	of	the	last	Media	Data	box.	The	semantics	
of	padding_flag	equal	to	0	are	that	this	is	not	assured.	

assignment_type	 indicates	 the	 mechanism	 used	 to	 specify	 the	 assignment	 to	 a	 level.	
assignment_type	 values	 greater	 than	 4	 are	 reserved,	 while	 the	 semantics	 for	 the	 other	
values	are	specified	as	follows.	The	sequence	of	assignment_types	is	restricted	to	be	a	set	of	zero	
or	more	of	type	2	or	3,	followed	by	zero	or	more	of	exactly	one	type.	
 0:	sample	groups	are	used	to	specify	levels,	i.e.,	samples	mapped	to	different	sample	group	

description	 indexes	 of	 a	 particular	 sample	 grouping	 lie	 in	 different	 levels	 within	 the	
identified	track;	other	tracks	are	not	affected	and	must	have	all	their	data	in	precisely	one	
level;	

 1:	as	for	assignment_type	0	except	assignment	is	by	a	parameterized	sample	group;	
 2,	 3:	 level	 assignment	 is	 by	 track	 (see	 the	 Subsegment	 Index	 Box	 for	 the	 difference	 in	

processing	of	these	levels)	
 4:	 the	 respective	 level	 contains	 the	 samples	 for	 a	 sub‐track.	 The	 sub‐tracks	 are	 specified	

through	 the	 Sub	 Track	 box;	 other	 tracks	 are	 not	 affected	 and	must	 have	 all	 their	 data	 in	
precisely	one	level;	

grouping_type	 and	 grouping_type_parameter,	 if	 present,	 specify	 the	 sample	 grouping	
used		
to	map	sample	group	description	entries	in	the	Sample	Group	Description	box	to	levels.	Level	n	
contains	the	samples	that	are	mapped	to	the	sample	group	description	entry	having	index	n	in	
the	 Sample	 Group	 Description	 box	 having	 the	 same	 values	 of	 grouping_type	 and	
grouping_type_parameter,	if	present,	as	those	provided	in	this	box.	

sub_track_id	 specifies	 that	 the	 sub‐track	 identified	 by	sub_track_id	within	 loop	 entry	 j	 is	
mapped	to	level	j.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 65

	

8.8.14 Sample Auxiliary Information in Movie Fragments

When	sample	auxiliary	information	(8.7.8	and	8.7.9)	is	present	in	the	Movie	Fragment	box,	the	offsets	in	
the	Sample	Auxiliary	Information	Offsets	Box	are	treated	the	same	as	the	data_offset	 in	the	Track	
Fragment	Run	box,	that	is,	they	are	relative	to	any	base	data	offset	established	for	that	track	fragment.	If	
movie	 fragment	 relative	 addressing	 is	 used	 (no	 base	 data	 offset	 is	 provided	 in	 the	 track	 fragment	
header)	and	auxiliary	information	is	present,	then	the	default_base_is_moof	flag	must	also	be	set	
in	the	flags	of	that	track	fragment	header.	

If	 only	 one	 offset	 is	 provided,	 then	 the	 Sample	 Auxiliary	 Information	 for	 all	 the	 track	 runs	 in	 the	
fragment	is	stored	contiguously,	otherwise	exactly	one	offset	must	be	provided	for	each	track	run.	

If	 the	 field	 default_sample_info_size	 is	 non‐zero	 in	 one	 of	 these	 boxes,	 then	 the	 size	 of	 the	
auxiliary	information	is	constant	for	the	identified	samples.	

In	addition,	if:	

 this	box	is	present	in	the	movie	box,	

 and	default_sample_info_size	is	non‐zero	in	the	box	in	the	movie	box,	

 and	the	sample	auxiliary	information	sizes	box	is	absent	in	a	movie	fragment,	

then	the	auxiliary	information	has	this	same	constant	size	for	every	sample	in	the	movie	fragment	also;	
it	is	then	not	necessary	to	repeat	the	box	in	the	movie	fragment.	

8.8.15 Track Extension Properties Box

8.8.15.1 Definition

Box	Type:	 ‘trep’	
Container:	 Movie	Extends	Box	(‘mvex’)	
Mandatory:	No	
Quantity:	 Zero	or	more.	(Zero	or	one	per	track)	

This	box	can	be	used	to	document	or	summarize	characteristics	of	the	track	in	the	subsequent	movie	
fragments.	It	may	contain	any	number	of	child	boxes.	

8.8.15.2 Syntax

class TrackExtensionPropertiesBox extends FullBox(‘trep’, 0, 0) {
 unsigned int(32) track_id;
 // Any number of boxes may follow
}

8.8.15.3 Semantics

track_id	indicates	the	track	for	which	the	track	extension	properties	are	provided	in	this	box.	

ISO/IEC 14496-12:2015(E)

66	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.8.16 Alternative Startup Sequence Properties Box

8.8.16.1 Definition

Box	Type:	 ‘assp’	
Container:	 Track	Extension	Properties	Box	(‘trep’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	indicates	the	properties	of	alternative	startup	sequence	sample	groups	in	the	subsequent	track	
fragments	of	the	track	indicated	in	the	containing	Track	Extension	Properties	box.	

Version	0	of	the	Alternative	Startup	Sequence	Properties	box	shall	be	used	if	version	0	of	the	Sample	to	
Group	box	 is	used	 for	 the	alternative	startup	sequence	sample	grouping.	Version	1	of	 the	Alternative	
Startup	Sequence	Properties	box	shall	be	used	if	version	1	of	the	Sample	to	Group	box	is	used	for	the	
alternative	startup	sequence	sample	grouping.	

8.8.16.2 Syntax

class AlternativeStartupSequencePropertiesBox extends FullBox(‘assp’, version, 0)
{
 if (version == 0) {
 signed int(32) min_initial_alt_startup_offset;
 }
 else if (version == 1) {
 unsigned int(32) num_entries;
 for (j=1; j <= num_entries; j++) {
 unsigned int(32) grouping_type_parameter;
 signed int(32) min_initial_alt_startup_offset;
 }
 }
}

8.8.16.3 Semantics

min_initial_alt_startup_offset:	No	value	of	sample_offset[1]	of	the	referred	sample	
group	description	entries	of	the	alternative	startup	sequence	sample	grouping	shall	be	smaller	
than	min_initial_alt_startup_offset.	In	version	0	of	this	box,	the	alternative	startup	sequence	
sample	grouping	using	version	0	of	the	Sample	to	Group	box	is	referred	to.	In	version	1	of	this	
box,	the	alternative	startup	sequence	sample	grouping	using	version	1	of	the	Sample	to	Group	
box	is	referred	to	as	further	constrained	by	grouping_type_parameter.	

num_entries	indicates	the	number	of	alternative	startup	sequence	sample	groupings	
documented	in	this	box.	

grouping_type_parameter	 indicates	which	one	of	 the	alternative	sample	groupings	this	 loop	
entry	applies	to.	

8.8.17 Metadata and user data in movie fragments

When	meta	boxes	occur	in	movie	fragment	or	track	fragment	boxes,	the	following	applies.	The	file	must	
have	been	fragmented	such	that	any	meta‐data	needed	in	the	movie	or	track	fragment	is	formed	from	
the	union	of	 the	meta‐data	 in	 the	movie	box	and	 the	 fragment,	not	considering	or	using	meta‐data	 in	
any	other	fragment.	Meta‐data	in	a	movie	or	track	fragment	is	logically	‘arriving	late’	but	is	valid	for	the	
entire	 track.	 When	 a	 file	 is	 de‐fragmented,	 the	 meta‐data	 in	 the	 movie	 or	 track	 fragments	 must	 be	
merged	 into	 the	movie	 or	 track	 boxes,	 respectively.	 This	 process	 allows	 for	 ‘just	 in	 time’	 delivery	 of	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 67

	

support	resources,	and	bandwidth	management,	while	preserving	the	essentially	atemporal	nature	of	
untimed	meta‐data.	If	meta‐data	truly	changes	over	time,	a	timed	meta‐data	track	may	be	needed.	

If,	during	this	merge,	there	are	either	(a)	meta‐data	items	with	the	same	item_ID	or	(b)	user‐data	items	
with	the	same	type,	then	the	following	applies:	

a) all	occurrences	of	the	data	(user‐data	box	or	meta‐data	item)	must	be	‘true’	for	the	entire	movie	
including	all	fragments;	

b) the	occurrences	in	higher‐numbered	movie	fragments	(‘later’	occurrences)	may	be	more	
accurate	or	‘preferred’;	

c) in	particular,	data	in	an	empty	initial	movie	atom	may	be	only	estimates	or	‘not	to	exceed’	
values,	and	data	in	a	final	otherwise	empty	movie	fragment	may	be	the	‘final’	or	most	accurate	
values.	

8.9 Sample Group Structures

8.9.1 Introduction

This	 clause	 specifies	 a	 generic	 mechanism	 for	 representing	 a	 partition	 of	 the	 samples	 in	 a	 track.	 A	
sample grouping is	an	assignment	of	each	sample	in	a	track	to	be	a	member	of	one	sample group,	based	
on	a	grouping	criterion.	A	sample	group	in	a	sample	grouping	is	not	limited	to	being	contiguous	samples	
and	 may	 contain	 non‐adjacent	 samples.	 As	 there	 may	 be	 more	 than	 one	 sample	 grouping	 for	 the	
samples	in	a	track,	each	sample	grouping	has	a	type	field	to	indicate	the	type	of	grouping.	For	example,	a	
file	might	contain	two	sample	groupings	for	the	same	track:	one	based	on	an	assignment	of	sample	to	
layers	and	another	to	sub‐sequences.	

Sample	 groupings	 are	 represented	 by	 two	 linked	 data	 structures:	 (1)	 a	 SampleToGroup	 box	
represents	 the	 assignment	 of	 samples	 to	 sample	 groups;	 (2)	 a	 SampleGroupDescription	 box	
contains	a	sample group entry	for	each	sample	group	describing	the	properties	of	the	group.	There	may	
be	 multiple	 instances	 of	 the	 SampleToGroup	 and	 SampleGroupDescription	 boxes	 based	 on	
different	grouping	criteria.	These	are	distinguished	by	a	type	field	used	to	indicate	the	type	of	grouping.	

A	grouping	of	a	particular	grouping	type	may	use	a	parameter	in	the	sample	to	group	mapping;	if	so,	the	
meaning	 of	 the	 parameter	 must	 be	 documented	 with	 the	 group.	 An	 example	 of	 this	 might	 be	
documented	the	sync	points	in	a	multiplex	of	several	video	streams;	the	group	definition	might	be	‘Is	an	
I	frame’,	and	the	group	parameter	might	be	the	identifier	of	each	stream.	Since	the	sample	to	group	box	
occurs	 once	 for	 each	 stream,	 it	 is	 now	 both	 compact,	 and	 informs	 the	 reader	 about	 each	 stream	
separately.	

One	example	of	using	these	tables	is	to	represent	the	assignments	of	samples	to	layers.	In	this	case	each	
sample	 group	 represents	 one	 layer,	 with	 an	 instance	 of	 the	SampleToGroup	 box	 describing	which	
layer	a	sample	belongs	to.	

ISO/IEC 14496-12:2015(E)

68	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.9.2 Sample to Group Box

8.9.2.1 Definition

Box	Type:	 ‘sbgp’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Fragment	Box	(‘traf’)		
Mandatory:	No	
Quantity:	 Zero	or	more.	

This	table	can	be	used	to	find	the	group	that	a	sample	belongs	to	and	the	associated	description	of	that	
sample	group.	The	table	is	compactly	coded	with	each	entry	giving	the	index	of	the	first	sample	of	a	run	
of	samples	with	 the	same	sample	group	descriptor.	The	sample	group	description	 ID	 is	an	 index	 that	
refers	to	a	SampleGroupDescription	box,	which	contains	entries	describing	the	characteristics	of	
each	sample	group.	

There	may	be	multiple	instances	of	this	box	if	there	is	more	than	one	sample	grouping	for	the	samples	
in	 a	 track.	 Each	 instance	 of	 the	 SampleToGroup	 box	 has	 a	 type	 code	 that	 distinguishes	 different	
sample	groupings.	There	shall	be	at	most	one	instance	of	this	box	with	a	particular	grouping	type	in	a	
Sample	Table	Box	or	Track	Fragment	Box.	The	associated	SampleGroupDescription	shall	indicate	
the	same	value	for	the	grouping	type.	

Version	1	of	this	box	should	only	be	used	if	a	grouping	type	parameter	is	needed.	

8.9.2.2 Syntax

aligned(8) class SampleToGroupBox
 extends FullBox(‘sbgp’, version, 0)
{
 unsigned int(32) grouping_type;
 if (version == 1) {
 unsigned int(32) grouping_type_parameter;
 }
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++)
 {
 unsigned int(32) sample_count;
 unsigned int(32) group_description_index;
 }
}

8.9.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box,	either	0	or	1.	
grouping_type is	 an	 integer	 that	 identifies	 the	 type	 (i.e.	 criterion	 used	 to	 form	 the	 sample	

groups)	of	the	sample	grouping	and	links	it	to	its	sample	group	description	table	with	the	same	
value	 for	 grouping	 type.	 At	 most	 one	 occurrence	 of	 this	 box	 with	 the	 same	 value	 for	
grouping_type	(and, if used, grouping_type_parameter)	shall	exist	for	a	track.	

grouping_type_parameter is	an	indication	of	the	sub‐type	of	the	grouping	
entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
sample_count	is	an	integer	that	gives	the	number	of	consecutive	samples	with	the	same	sample	

group	descriptor.	If	the	sum	of	the	sample	count	in	this	box	is	less	than	the	total	sample	count,	
or	there	is	no	sample‐to‐group	box	that	applies	to	some	samples	(e.g.	it	is	absent	from	a	track	
fragment),	then	the	reader	should	associates	the	samples	that	have	no	explicit	group	association	
with	the	default	group	defined	in	the	SampleDescriptionGroup	box,	if	any,	or	else	with	no	group.	
It	 is	 an	 error	 for	 the	 total	 in	 this	 box	 to	 be	 greater	 than	 the	 sample_count	 documented	
elsewhere,	and	the	reader	behaviour	would	then	be	undefined.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 69

	

group_description_index is	an	integer	that	gives	the	index	of	the	sample	group	entry	which	
describes	 the	samples	 in	 this	group.	The	 index	ranges	 from	1	 to	 the	number	of	 sample	group	
entries	 in	 the	 SampleGroupDescription	 Box,	 or	 takes	 the	 value	 0	 to	 indicate	 that	 this	
sample	is	a	member	of	no	group	of	this	type.	

8.9.3 Sample Group Description Box

8.9.3.1 Definition

Box	Type:	 ‘sgpd’	
Container:	 Sample	Table	Box	(‘stbl’)	or	Track	Fragment	Box	(‘traf’)	
Mandatory:	No	
Quantity:	 Zero	or	more,	with	one	for	each	Sample	to	Group	Box.	

This	 description	 table	 gives	 information	 about	 the	 characteristics	 of	 sample	 groups.	 The	 descriptive	
information	is	any	other	information	needed	to	define	or	characterize	the	sample	group.	

There	may	be	multiple	instances	of	this	box	if	there	is	more	than	one	sample	grouping	for	the	samples	
in	a	 track.	Each	 instance	of	 the	SampleGroupDescription	 box	has	 a	 type	code	 that	distinguishes	
different	sample	groupings.	There	shall	be	at	most	one	instance	of	this	box	with	a	particular	grouping	
type	in	a	Sample	Table	Box	or	Track	Fragment	Box.	The	associated	SampleToGroup	shall	indicate	the	
same	value	for	the	grouping	type.	

The	information	is	stored	in	the	sample	group	description	box	after	the	entry‐count.	An	abstract	entry	
type	 is	defined	and	 sample	groupings	 shall	 define	derived	 types	 to	 represent	 the	description	of	 each	
sample	group.	For	video	tracks,	an	abstract	VisualSampleGroupEntry	is	used	with	similar	types	for	
audio	and	hint	tracks.	

NOTE	In	version	0	of	the	entries	the	base	classes	for	sample	group	description	entries	are	neither	boxes	nor	
have	a	size	that	is	signaled.	For	this	reason,	use	of	version	0	entries	is	deprecated.	When	defining	derived	
classes,	ensure	either	that	they	have	a	fixed	size,	or	that	the	size	is	explicitly	indicated	with	a	length	field.	An	
implied	 size	 (e.g.	 achieved	 by	 parsing	 the	 data)	 is	 not	 recommended	 as	 this	 makes	 scanning	 the	 array	
difficult.	

8.9.3.2 Syntax

// Sequence Entry
abstract class SampleGroupDescriptionEntry (unsigned int(32) grouping_type)
{
}

abstract class VisualSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

abstract class AudioSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

abstract class HintSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

ISO/IEC 14496-12:2015(E)

70	 ©	ISO/IEC	2015	–	All	rights	reserved

	

abstract class SubtitleSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

abstract class TextSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

aligned(8) class SampleGroupDescriptionBox (unsigned int(32) handler_type)
 extends FullBox('sgpd', version, 0){
 unsigned int(32) grouping_type;
 if (version==1) { unsigned int(32) default_length; }
 if (version>=2) {
 unsigned int(32) default_sample_description_index;
 }
 unsigned int(32) entry_count;
 int i;
 for (i = 1 ; i <= entry_count ; i++){
 if (version==1) {
 if (default_length==0) {
 unsigned int(32) description_length;
 }
 }
 SampleGroupEntry (grouping_type);
 // an instance of a class derived from SampleGroupEntry
 // that is appropriate and permitted for the media type
 }
}

8.9.3.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box.	
grouping_type is	 an	 integer	 that	 identifies	 the	SampleToGroup	 box	 that	 is	 associated	with	

this	 sample	 group	 description.	 If	 grouping_type_parameter	 is	 not	 defined	 for	 a	 given	
grouping_type,	then	there	shall	be	only	one	occurrence	of	this	box	with	this	grouping_type.	

default_sample_description_index: specifies the index of the sample group description
entry which applies to all samples in the track for which no sample to group mapping is
provided through a SampleToGroup box. The default value of this field is zero (indicating
that the samples are mapped to no group of this type).

entry_count	is	an	integer	that	gives	the	number	of	entries	in	the	following	table.	
default_length indicates	the	length	of	every	group	entry	(if	the	length	is	constant),	or	zero	(0)	

if	it	is	variable	
description_length	indicates	the	length	of	an	individual	group	entry,	in	the	case	it	varies	from	

entry	to	entry	and	default_length	is	therefore	0	

8.9.4 Representation of group structures in Movie Fragments

Support	 for	 Sample	 Group	 structures	 within	 Movie	 fragments	 is	 provided	 by	 the	 use	 of	 the	
SampleToGroup	Box	with	the	container	for	this	Box	being	the	Track Fragment	Box	(‘traf’).	The	
definition,	syntax	and	semantics	of	this	Box	is	as	specified	in	subclause	8.9.2.	

The	SampleToGroup Box	can	be	used	to	find	the	group	that	a	sample	in	a	track	fragment	belongs	to	
and	 the	 associated	 description	 of	 that	 sample	 group.	 The	 table	 is	 compactly	 coded	 with	 each	 entry	
giving	 the	 index	of	 the	 first	 sample	of	 a	 run	 of	 samples	with	 the	 same	 sample	 group	descriptor.	The	
sample	 group	 description	 ID	 is	 an	 index	 that	 refers	 to	 a	 SampleGroupDescription	 Box,	 which	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 71

	

contains	 entries	 describing	 the	 characteristics	 of	 each	 sample	 group	 and	 present	 in	 the	
SampleTableBox.	

There	may	be	multiple	instances	of	the	SampleToGroup	Box	if	there	is	more	the	one	sample	grouping	
for	 the	samples	 in	a	 track	 fragment.	Each	 instance	of	 the	SampleToGroup	Box	has	a	 type	code	 that	
distinguishes	different	sample	groupings.	The	associated	SampleGroupDescription	 shall	 indicate	
the	same	value	for	the	grouping	type.	

The	 total	 number	 of	 samples	 represented	 in	 any	SampleToGroup	 Box	 in	 the	 track	 fragment	 must	
match	 the	 total	 number	 of	 samples	 in	 all	 the	 track	 fragment	 runs.	 Each	 SampleToGroup	 Box	
documents	a	different	grouping	of	the	same	samples.	

Zero	 or	 more	 SampleGroupDescription	 boxes	 may	 also	 be	 present	 in	 a	 Track	 Fragment	 Box.	 These	
definitions	are	additional	to	the	definitions	provided	in	the	Sample	Table	of	the	track	in	the	Movie	Box.	
Group	 definitions	 within	 a	 movie	 fragment	 can	 also	 be	 referenced	 and	 used	 from	within	 that	 same	
movie	fragment.	

Within	 the	 SampleToGroup	 box	 in	 that	 movie	 fragment,	 the	 group	 description	 indexes	 for	 groups	
defined	within	the	same	fragment	start	at	0x10001,	i.e.	the	index	value	1,	with	the	value	1	in	the	top	16	
bits.	This	means	there	must	be	fewer	than	65536	group	definitions	for	this	track	and	grouping	type	in	
the	sample	table	in	the	Movie	Box.	

When	changing	the	size	of	movie	fragments,	or	removing	them,	these	fragment‐local	group	definitions	
will	need	to	be	merged	into	the	definitions	in	the	movie	box,	or	into	the	new	movie	fragments,	and	the	
index	 numbers	 in	 the	 SampleToGroup	 box(es)	 adjusted	 accordingly.	 It	 is	 recommended	 that,	 in	 this	
process,	 identical	 (and	hence	duplicate)	definitions	not	be	made	 in	any	SampleGroupDescription	box,	
but	that	duplicates	be	merged	and	the	indexes	adjusted	accordingly.	

8.10 User Data

8.10.1 User Data Box

8.10.1.1 Definition

Box	Type:	 ‘udta’	
Container:	 Movie	Box	(‘moov’),	Track	Box	(‘trak’),		
	 Movie	Fragment	Box	(‘moof’)	or	Track	Fragment	Box	(‘traf’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	 box	 contains	 objects	 that	 declare	 user	 information	 about	 the	 containing	 box	 and	 its	 data	
(presentation	or	track).	

The	User	Data	Box	is	a	container	box	for	informative	user‐data.	This	user	data	is	formatted	as	a	set	of	
boxes	with	more	specific	box	types,	which	declare	more	precisely	their	content.	

The	handling	of	user‐data	in	movie	fragments	is	described	in	8.8.17.	

ISO/IEC 14496-12:2015(E)

72	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.10.1.2 Syntax

aligned(8) class UserDataBox extends Box(‘udta’) {
}

8.10.2 Copyright Box

8.10.2.1 Definition

Box	Type:	 ‘cprt’	
Container:	 User	data	box	(‘udta’)	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	 Copyright	 box	 contains	 a	 copyright	 declaration	 which	 applies	 to	 the	 entire	 presentation,	 when	
contained	 within	 the	 Movie	 Box,	 or,	 when	 contained	 in	 a	 track,	 to	 that	 entire	 track.	 There	 may	 be	
multiple	copyright	boxes	using	different	language	codes.	

8.10.2.2 Syntax

aligned(8) class CopyrightBox
 extends FullBox(‘cprt’, version = 0, 0) {
 const bit(1) pad = 0;
 unsigned int(5)[3] language; // ISO-639-2/T language code
 string notice;
}

8.10.2.3 Semantics

language declares	the	language	code	for	the	following	text.	See	ISO	639‐2/T	for	the	set	of	three	
character	codes.	Each	character	 is	packed	as	 the	difference	between	 its	ASCII	value	and	0x60.	
The	code	is	confined	to	being	three	lower‐case	letters,	so	these	values	are	strictly	positive.	

notice	is	a	null‐terminated	string	in	either	UTF‐8	or	UTF‐16	characters,	giving	a	copyright	notice.	
If	UTF‐16	is	used,	the	string	shall	start	with	the	BYTE	ORDER	MARK	(0xFEFF),	to	distinguish	it	
from	a	UTF‐8	string.	This	mark	does	not	form	part	of	the	final	string.	

8.10.3 Track Selection Box

8.10.3.1 Introduction

A	typical	presentation	stored	in	a	file	contains	one	alternate	group	per	media	type:	one	for	video,	one	
for	audio,	etc.	Such	a	 file	may	include	several	video	tracks,	although,	at	any	point	 in	time,	only	one	of	
them	should	be	played	or	streamed.	This	is	achieved	by	assigning	all	video	tracks	to	the	same	alternate	
group.	(See	subclause	8.3.2	for	the	definition	of	alternate	groups.)	

All	tracks	in	an	alternate	group	are	candidates	for	media	selection,	but	it	may	not	make	sense	to	switch	
between	some	of	 those	 tracks	during	a	 session.	One	may	 for	 instance	allow	switching	between	video	
tracks	 at	 different	 bitrates	 and	 keep	 frame	 size	 but	 not	 allow	 switching	 between	 tracks	 of	 different	
frame	size.	In	the	same	manner	it	may	be	desirable	to	enable	selection	–	but	not	switching	–	between	
tracks	of	different	video	codecs	or	different	audio	languages.	

The	distinction	between	 tracks	 for	 selection	 and	 switching	 is	 addressed	by	assigning	 tracks	 to	 switch	
groups	in	addition	to	alternate	groups.	One	alternate	group	may	contain	one	or	more	switch	groups.	All	
tracks	in	an	alternate	group	are	candidates	for	media	selection,	while	tracks	in	a	switch	group	are	also	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 73

	

available	 for	switching	during	a	session.	Different	switch	groups	represent	different	operation	points,	
such	as	different	frame	size,	high/low	quality,	etc.	

For	the	case	of	non‐scalable	bitstreams,	several	tracks	may	be	included	in	a	switch	group.	The	same	also	
applies	to	non‐layered	scalable	bitstreams,	such	as	traditional	AVC	streams.	

By	labelling	tracks	with	attributes	it	is	possible	to	characterize	them.	Each	track	can	be	labelled	with	a	
list	of	attributes	which	can	be	used	to	describe	tracks	in	a	particular	switch	group	or	differentiate	tracks	
that	belong	to	different	switch	groups.	

8.10.3.2 Definition

Box	Type:	 ‘tsel’	
Container:	 User	Data	Box	(‘udta’)	
Mandatory:	No	
Quantity:	 Zero	or	One	

The	track	selection	box	is	contained	in	the	user	data	box	of	the	track	it	modifies.	

8.10.3.3 Syntax

aligned(8) class TrackSelectionBox
 extends FullBox(‘tsel’, version = 0, 0) {
 template int(32) switch_group = 0;
 unsigned int(32) attribute_list[]; // to end of the box
}

8.10.3.4 Semantics

switch_group is	an	integer	that	specifies	a	group	or	collection	of	tracks.	If	this	field	is	0	(default	
value)	or	if	the	Track	Selection	box	is	absent	there	is	no	information	on	whether	the	track	can	be	
used	for	switching	during	playing	or	streaming.	 If	 this	 integer	is	not	0	 it	shall	be	the	same	for	
tracks	that	can	be	used	for	switching	between	each	other.	Tracks	that	belong	to	the	same	switch	
group	shall	belong	to	the	same	alternate	group.	A	switch	group	may	have	only	one	member.	

attribute_list	is	a	list,	to	the	end	of	the	box,	of	attributes.	The	attributes	in	this	list	should	be	
used	 as	 descriptions	 of	 tracks	 or	 differentiation	 criteria	 for	 tracks	 in	 the	 same	 alternate	 or	
switch	 group.	 Each	 differentiating	 attribute	 is	 associated	 with	 a	 pointer	 to	 the	 field	 or	
information	that	distinguishes	the	track.	

8.10.3.5 Attributes

ISO/IEC 14496-12:2015(E)

74	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	following	attributes	are	descriptive:	

Name Attribute Description

Temporal	
scalability	

‘tesc’	 The	track	can	be	temporally	scaled.	

Fine‐grain	SNR	
scalability	

‘fgsc’	 The	track	can	be	scaled	in	terms	of	quality.	

Coarse‐grain	SNR	
scalability	

‘cgsc’	 The	track	can	be	scaled	in	terms	of	quality.	

Spatial	scalability	 ‘spsc’	 The	track	can	be	spatially	scaled.		

Region‐of‐interest	
scalability	

‘resc’	 The	track	can	be	region‐of‐interest	scaled.	

View	scalability	 ‘vwsc’ The	track	can	be	scaled	in	terms	of	number	of	views.	

The	following	attributes	are	differentiating:	

Name Attribute Pointer

Codec	 ‘cdec’	 Sample	 Entry	 (in	 Sample	 Description	 box	 of	 media	
track)	

Screen	size	 ‘scsz’	 Width	and	height	fields	of	Visual	Sample	Entries.	

Max	packet	size	 ‘mpsz’	 Maxpacketsize	field	in	RTP	Hint	Sample	Entry	

Media	type	 ‘mtyp’	 Handlertype	in	Handler	box	(of	media	track)	

Media	language		 ‘mela’	 Language	field	in	Media	Header	box	

Bitrate	 ‘bitr’	 Total	size	of	the	samples	in	the	track	divided	by	the	
duration	in	the	track	header	box	

Frame	rate	 ‘frar’	 Number	of	samples	in	the	track	divided	by	duration	
in	the	track	header	box	

Number	of	views	 ‘nvws’ Number	of	views	in	the	sub	track	

Descriptive	 attributes	 characterize	 the	 tracks	 they	 modify,	 whereas	 differentiating	 attributes	
differentiate	 between	 tracks	 that	 belong	 to	 the	 same	 alternate	 or	 switch	 groups.	 The	 pointer	 of	 a	
differentiating	attribute	indicates	the	location	of	the	information	that	differentiates	the	track	from	other	
tracks	with	the	same	attribute.	

8.10.4 Track kind

8.10.4.1 Definition

Box	Type:	 ‘kind’	
Container:	 User	data	box	(‘udta’)	in	a	track		
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	Kind	box	labels	a	track	with	its	role	or	kind.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 75

	

It	contains	a	URI,	possibly	followed	by	a	value.	If	only	a	URI	occurs,	then	the	kind	is	defined	by	that	URI;	
if	a	value	follows,	then	the	naming	scheme	for	the	value	is	identified	by	the	URI.	Both	the	URI	and	the	
value	are	null‐terminated	C	strings.	

More	 than	one	of	 these	may	occur	 in	a	 track,	with	different	 contents	but	with	appropriate	semantics	
(e.g.	two	schemes	that	both	define	a	kind	that	indicates	sub‐titles).	

8.10.4.2 Syntax

aligned(8) class KindBox
 extends FullBox(‘kind’, version = 0, 0) {
 string schemeURI;
 string value;
}

8.10.4.3 Semantics

schemeURI	is	a	NULL‐terminated	C	string	declaring	either	the	identifier	of	the	kind,	if	no	value	
follows,	or	the	identifier	of	the	naming	scheme	for	the	following	value.	

value	is	a	name	from	the	declared	scheme	

8.11 Metadata Support

A	common	base	structure	is	used	to	contain	general	metadata,	called	the	meta	box.	

8.11.1 The Meta box

8.11.1.1 Definition

Box	Type:	 ‘meta’	
Container:	 File,	Movie	Box	(‘moov’),	Track	Box	(‘trak’),		
	 Additional	Metadata	Container	Box	(‘meco’),		
	 Movie	Fragment	Box	(‘moof’)	or	Track	Fragment	Box	(‘traf’)	
Mandatory:	No	
Quantity:	 Zero	or	one	(in	File,	‘moov’,	and	‘trak’),	One	or	more	(in	‘meco’)	

A	 meta	 box	 contains	 descriptive	 or	 annotative	 metadata.	 The	 'meta'	 box	 is	 required	 to	 contain	 a	
‘hdlr’	box	indicating	the	structure	or	format	of	the	‘meta’	box	contents.	That	metadata	is	 located	
either	within	a	box	within	this	box	(e.g.	an	XML	box),	or	is	located	by	the	item	identified	by	a	primary	
item	box.	

All	other	contained	boxes	are	specific	to	the	format	specified	by	the	handler	box.	

The	other	boxes	defined	here	may	be	defined	as	optional	or	mandatory	for	a	given	format.	If	they	are	
used,	then	they	must	take	the	form	specified	here.	These	optional	boxes	include	a	data‐information	box,	
which	documents	other	 files	 in	which	metadata	values	 (e.g.	 pictures)	 are	placed,	 and	a	 item	 location	
box,	which	documents	where	 in	 those	 files	 each	 item	 is	 located	 (e.g.	 in	 the	 common	case	of	multiple	
pictures	stored	in	the	same	file).	At	most	one	meta	box	may	occur	at	each	of	the	file	level,	movie	level,	or	
track	level,	unless	they	are	contained	in	an	additional	metadata	container	box	(‘meco’).	

If	 an	 Item	 Protection	 Box	 occurs,	 then	 some	 or	 all	 of	 the	meta‐data,	 including	 possibly	 the	 primary	
resource,	 may	 have	 been	 protected	 and	 be	 un‐readable	 unless	 the	 protection	 system	 is	 taken	 into	
account.	

ISO/IEC 14496-12:2015(E)

76	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	handling	of	meta‐data	in	movie	fragments	is	described	in	8.8.17.	

8.11.1.2 Syntax

aligned(8) class MetaBox (handler_type)
 extends FullBox(‘meta’, version = 0, 0) {
 HandlerBox(handler_type) theHandler;
 PrimaryItemBox primary_resource; // optional
 DataInformationBox file_locations; // optional
 ItemLocationBox item_locations; // optional
 ItemProtectionBox protections; // optional
 ItemInfoBox item_infos; // optional
 IPMPControlBox IPMP_control; // optional
 ItemReferenceBox item_refs; // optional
 ItemDataBox item_data; // optional
 Box other_boxes[]; // optional
}

8.11.1.3 Semantics

The	structure	or	format	of	the	metadata	is	declared	by	the	handler.	In	the	case	that	the	primary	data	
is	 identified	by	a	primary	 item,	 and	 that	primary	 item	has	an	 item	 information	entry	with	an	
item_type,	the	handler	type	may	be	the	same	as	the	item_type.	

8.11.2 XML Boxes

8.11.2.1 Definition

Box	Type:	 ‘xml ‘	or	‘bxml’	
Container:	 Meta	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

When	the	primary	data	is	in	XML	format	and	it	is	desired	that	the	XML	be	stored	directly	in	the	meta‐
box,	one	of	these	forms	may	be	used.	The	Binary	XML	Box	may	only	be	used	when	there	is	a	single	well‐
defined	binarization	of	the	XML	for	that	defined	format	as	identified	by	the	handler.	

Within	an	XML	box	the	data	 is	 in	UTF‐8	format	unless	the	data	starts	with	a	byte‐order‐mark	(BOM),	
which	indicates	that	the	data	is	in	UTF‐16	format.	

8.11.2.2 Syntax

aligned(8) class XMLBox
 extends FullBox(‘xml ’, version = 0, 0) {
 string xml;
}

aligned(8) class BinaryXMLBox
 extends FullBox(‘bxml’, version = 0, 0) {
 unsigned int(8) data[]; // to end of box
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 77

	

8.11.3 The Item Location Box

8.11.3.1 Definition

Box	Type:	 ‘iloc’	
Container:	 Meta	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	item	location	box	provides	a	directory	of	resources	in	this	or	other	files,	by	locating	their	container,	
their	 offset	 within	 that	 container,	 and	 their	 length.	 Placing	 this	 in	 binary	 format	 enables	 common	
handling	 of	 this	 data,	 even	 by	 systems	 which	 do	 not	 understand	 the	 particular	 metadata	 system	
(handler)	used.	For	example,	a	system	might	integrate	all	the	externally	referenced	metadata	resources	
into	one	place,	re‐adjusting	offsets	and	references	accordingly.	

The	 box	 starts	with	 three	 or	 four	 values,	 specifying	 the	 size	 in	 bytes	 of	 the	offset field,	length
field,	base_offset	field,	and,	in	versions	1	and	2	of	this	box,	the	extent_index	fields,	respectively.	
These	values	must	be	from	the	set	{0,	4,	8}.	

The	construction_method	field	indicates	the	‘construction	method’	for	the	item:	

i)	 file_offset:	by	the	usual	absolute	file	offsets	into	the	file	at	data_reference_index;	
(construction_method	==	0)	

ii)	 idat_offset:	by	box	offsets	into	the	idat	box	in	the	same	meta	box;	neither	the	
data_reference_index	nor	extent_index	fields	are	used;	(construction_method	==	1)	

iii)	 item_offset:	by	item	offset	into	the	items	indicated	by	the	extent_index	field,	which	is	only	
used	(currently)	by	this	construction	method.	(construction_method	==	2).	

The	 extent_index	 is	 only	 used	 for	 the	method	 item_offset;	 it	 indicates	 the	 1‐based	 index	 of	 the	 item	
reference	with	referenceType	‘iloc’	linked	from	this	item.	If	index_size	is	0,	then	the	value	1	is	implied;	
the	value	0	is	reserved.	

Items	 may	 be	 stored	 fragmented	 into	 extents,	 e.g.	 to	 enable	 interleaving.	 An	 extent	 is	 a	 contiguous	
subset	 of	 the	bytes	 of	 the	 resource;	 the	 resource	 is	 formed	by	 concatenating	 the	 extents.	 If	 only	 one	
extent	is	used	(extent_count	=	1)	then	either	or	both	of	the	offset	and	length	may	be	implied:	

 If	 the	offset	 is	not	 identified	 (the	 field	has	 a	 length	of	 zero),	 then	 the	beginning	of	 the	 source	
(offset	0)	is	implied.	

 If	the	length	is	not	specified,	or	specified	as	zero,	then	the	entire	length	of	the	source	is	implied.	
References	 into	 the	 same	 file	 as	 this	 metadata,	 or	 items	 divided	 into	 more	 than	 one	 extent,	
should	have	an	explicit	offset	and	length,	or	use	a	MIME	type	requiring	a	different	interpretation	
of	the	file,	to	avoid	infinite	recursion.	

The	size	of	the	item	is	the	sum	of	the	extent	lengths.	

NOTE	Extents	may	be	interleaved	with	the	chunks	defined	by	the	sample	tables	of	tracks.	

The	offsets	are	relative	to	a	data	origin.	That	origin	is	determined	as	follows:	

ISO/IEC 14496-12:2015(E)

78	 ©	ISO/IEC	2015	–	All	rights	reserved

	

1) when	the	Meta	box	is	in	a	Movie	Fragment,	and	the	construction_method	specifies	a	file	offset,	
and	 the	 data	 reference	 indicates	 ‘same	 file’,	 the	 data	 origin	 is	 the	 first	 byte	 of	 the	 enclosing	
Movie	Fragment	Box	(as	for	the	default‐base‐is‐moof	flag	in	the	Track	Fragment	Header);	

2) in	 all	 other	 cases	when	 the	 construction_method	 specifies	 a	 file	 offset,	 the	 data	 origin	 is	 the	
beginning	of	the	file	identified	by	the	data	reference;	

3) when	 the	 construction_method	 specifies	 offsets	 into	 the	 Item	Data	 box,	 the	 data	 origin	 is	 the	
beginning	of	data[]	in	the	Item	Data	box;	

4) when	 the	 data	 reference	 specifies	 another	 item,	 the	 data	 origin	 is	 the	 first	 byte	 of	 the	
concatenated	data	(of	all	the	extents)	of	that	item;	

Note	 –	 There	 are	 offset	 calculations	 in	 other	 parts	 of	 this	 file	 format	 based	 on	 the	 beginning	 of	 a	 box	 header;	 in	
contrast,	item	data	offsets	are	calculated	relative	to	the	box	contents.	

The	 data‐reference	 index	 may	 take	 the	 value	 0,	 indicating	 a	 reference	 into	 the	 same	 file	 as	 this	
metadata,	or	an	index	into	the	data‐reference	table.	

Some	 referenced	 data	may	 itself	 use	 offset/length	 techniques	 to	 address	 resources	within	 it	 (e.g.	 an	
MP4	 file	might	 be	 ‘included’	 in	 this	way).	 Normally	 such	 offsets	 in	 the	 item	 itself	 are	 relative	 to	 the	
beginning	 of	 the	 containing	 file.	 The	 field	 ‘base	 offset’	 provides	 an	 additional	 offset	 for	 offset	
calculations	within	that	contained	data.	For	example,	if	an	MP4	file	is	included	within	a	file	formatted	to	
this	 specification,	 then	normally	data‐offsets	within	 that	MP4	 section	are	 relative	 to	 the	beginning	of	
file;	the	base	offset	adds	to	those	offsets.	

If	an	item	is	constructed	from	other	items,	and	those	source	items	are	protected,	the	offset	and	length	
information	apply	to	the	source	items	after	they	have	been	de‐protected.	That	is,	the	target	item	data	is	
formed	from	unprotected	source	data.	

For	 maximum	 compatibility,	 version	 0	 of	 this	 box	 should	 be	 used	 in	 preference	 to	 version	 1	 with	
construction_method==0,	or	version	2	when	possible.	Similarly,	version	2	of	this	box	should	only	
be	 used	 when	 support	 for	 large	 item_ID	 values	 (exceeding	 65535)	 is	 required	 or	 expected	 to	 be	
required.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 79

	

8.11.3.2 Syntax

aligned(8) class ItemLocationBox extends FullBox(‘iloc’, version, 0) {
 unsigned int(4) offset_size;
 unsigned int(4) length_size;
 unsigned int(4) base_offset_size;
 if ((version == 1) || (version == 2)) {
 unsigned int(4) index_size;
 } else {
 unsigned int(4) reserved;
 }
 if (version < 2) {
 unsigned int(16) item_count;
 } else if (version == 2) {
 unsigned int(32) item_count;
 }
 for (i=0; i<item_count; i++) {
 if (version < 2) {
 unsigned int(16) item_ID;
 } else if (version == 2) {
 unsigned int(32) item_ID;
 }
 if ((version == 1) || (version == 2)) {
 unsigned int(12) reserved = 0;
 unsigned int(4) construction_method;
 }
 unsigned int(16) data_reference_index;
 unsigned int(base_offset_size*8) base_offset;
 unsigned int(16) extent_count;
 for (j=0; j<extent_count; j++) {
 if (((version == 1) || (version == 2)) && (index_size > 0)) {
 unsigned int(index_size*8) extent_index;
 }
 unsigned int(offset_size*8) extent_offset;
 unsigned int(length_size*8) extent_length;
 }
 }
}

8.11.3.3 Semantics

offset_size	is	taken	from	the	set	{0,	4,	8}	and	indicates	the	length	in	bytes	of	the	offset field.	
length_size	is	taken	from	the	set	{0,	4,	8}	and	indicates	the	length	in	bytes	of	the	length field.	
base_offset_size	 is	 taken	 from	 the	 set	 {0,	 4,	 8}	 and	 indicates	 the	 length	 in	 bytes	 of	 the	

base_offset	field.	
index_size	is	taken	from	the	set	{0,	4,	8}	and	indicates	the	length	in	bytes	of	the	extent_index	

field.	
item_count	counts	the	number	of	resources	in	the	following	array.	
item_ID	 is	an	arbitrary	integer	‘name’	for	this	resource	which	can	be	used	to	refer	to	it	(e.g.	in	a	

URL).	
construction_method	is	taken	from	the	set	0	(file),	1	(idat)	or	2	(item)	
data-reference-index	is	either	zero	(‘this	file’)	or	a	1‐based	index	into	the	data	references	in	

the	data	information	box.	
base_offset	 provides	 a	 base	 value	 for	 offset	 calculations	 within	 the	 referenced	 data.	 If	

base_offset_size	is	0,	base_offset	takes	the	value	0,	i.e.	it	is	unused.	
extent_count	 provides	 the	 count	 of	 the	 number	 of	 extents	 into	 which	 the	 resource	 is	

fragmented;	it	must	have	the	value	1	or	greater	
extent_index	provides	an	index	as	defined	for	the	construction	method	
extent_offset	provides	the	absolute	offset,	in	bytes	from	the	data	origin	of	the	container,	of	this	

extent	data.	If	offset_size	is	0,	extent_offset	takes	the	value	0	

ISO/IEC 14496-12:2015(E)

80	 ©	ISO/IEC	2015	–	All	rights	reserved

	

extent_length	 provides	 the	 absolute	 length	 in	 bytes	 of	 this	 metadata	 item	 extent.	 If	
length_size	is	0,	extent_length	takes	the	value	0.	If	the	value	is	0,	then	length	of	the	extent	
is	the	length	of	the	entire	referenced	container.	

8.11.4 Primary Item Box

8.11.4.1 Definition

Box	Type:	 ‘pitm’	
Container:	 Meta	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

For	a	given	handler,	the	primary	data	may	be	one	of	the	referenced	items	when	it	is	desired	that	it	be	
stored	elsewhere,	or	divided	into	extents;	or	the	primary	metadata	may	be	contained	in	the	meta‐box	
(e.g.	in	an	XML	box).	Either	this	box	must	occur,	or	there	must	be	a	box	within	the	meta‐box	(e.g.	an	XML	
box)	containing	the	primary	information	in	the	format	required	by	the	identified	handler.	

8.11.4.2 Syntax

aligned(8) class PrimaryItemBox
 extends FullBox(‘pitm’, version, 0) {
 if (version == 0) {
 unsigned int(16) item_ID;
 } else {
 unsigned int(32) item_ID;
 }
}

8.11.4.3 Semantics

item_ID	is	the	identifier	of	the	primary	item.	Version	1	should	only	be	used	when	large	item_ID	
values	(exceeding	65535)	are	required	or	expected	to	be	required.	

8.11.5 Item Protection Box

8.11.5.1 Definition

Box	Type:	 ‘ipro’	
Container:	 Meta	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 item	 protection	 box	 provides	 an	 array	 of	 item	 protection	 information,	 for	 use	 by	 the	 Item	
Information	Box.	

8.11.5.2 Syntax

aligned(8) class ItemProtectionBox
 extends FullBox(‘ipro’, version = 0, 0) {
 unsigned int(16) protection_count;
 for (i=1; i<=protection_count; i++) {
 ProtectionSchemeInfoBox protection_information;
 }
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 81

	

8.11.6 Item Information Box

8.11.6.1 Definition

Box	Type:	 ‘iinf’	
Container:	 Meta	Box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 Item	 information	box	provides	 extra	 information	about	 selected	 items,	 including	 symbolic	 (‘file’)	
names.	 It	 may	 optionally	 occur,	 but	 if	 it	 does,	 it	 must	 be	 interpreted,	 as	 item	 protection	 or	 content	
encoding	may	have	changed	the	format	of	the	data	in	the	item.	If	both	content	encoding	and	protection	
are	indicated	for	an	item,	a	reader	should	first	un‐protect	the	item,	and	then	decode	the	item’s	content	
encoding.	If	more	control	is	needed,	an	IPMP	sequence	code	may	be	used.	

This	 box	 contains	 an	 array	 of	 entries,	 and	 each	 entry	 is	 formatted	 as	 a	 box.	 This	 array	 is	 sorted	 by	
increasing	item_ID	in	the	entry	records.	

Four	versions	of	the	item	info	entry	are	defined.	Version	1	includes	additional	information	to	version	0	
as	specified	by	an	extension	type.	For	instance,	it	shall	be	used	with	extension	type	'fdel'	 for	items	
that	are	referenced	by	the	file	partition	box	('fpar'),	which	is	defined	for	source	file	partitionings	and	
applies	 to	 file	 delivery	 transmissions.	 Versions	 2	 and	 3	 provide	 an	 alternative	 structure	 in	 which	
metadata	item	types	are	indicated	by	a	32‐bit	(typically	4‐character)	registered	or	defined	code;	two	of	
these	codes	are	defined	to	indicate	a	MIME	type	or	metadata	typed	by	a	URI.	Version	2	supports	16‐bit	
item_ID	values,	whereas	version	3	supports	32‐bit	item_ID	values.	

If	 no	 extension	 is	 desired,	 the	 box	 may	 terminate	 without	 the	 extension_type	 field	 and	 the	
extension;	if,	in	addition,	content_encoding	is	not	desired,	that	field	also	may	be	absent	and	the	box	
terminate	before	 it.	 If	 an	extension	 is	desired	without	 an	explicit	content_encoding,	 a	 single	null	
byte,	signifying	the	empty	string,	must	be	supplied	for	the	content_encoding,	before	the	indication	
of	extension_type.	

If	 file	 delivery	 item	 information	 is	 needed	 and	 a	 version	 2	 or	 3	 ItemInfoEntry	 is	 used,	 then	 the	 file	
delivery	information	is	stored	as	a	separate	item	of	type	‘fdel’	that	is	also	linked	by	an	item	reference	
from	the	item,	to	the	file	delivery	information,	of	type	‘fdel’.	There	must	be	exactly	one	such	reference	if	
file	delivery	information	is	needed.	

It	 is	possible	that	there	are	valid	URI	 forms	for	MPEG‐7	metadata	(e.g.	a	schema	URI	with	a	 fragment	
identifying	a	particular	element),	and	it	may	be	possible	that	these	structures	could	be	used	for	MPEG‐7.	
However,	there	is	explicit	support	for	MPEG‐7	in	ISO	base	media	file	format	family	files,	and	this	explicit	
support	is	preferred	as	it	allows,	among	other	things:	

a)	 incremental	update	of	the	metadata	(logically,	I/P	coding,	in	video	terms)	whereas	this	draft	is	
‘I‐frame	only’;	

b)	 binarization	and	thus	compaction;	

c)	 the	use	of	multiple	schemas.	

Therefore,	the	use	of	these	structures	for	MPEG‐7	is	deprecated	(and	undocumented).	

ISO/IEC 14496-12:2015(E)

82	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Information	on	URI	forms	for	some	metadata	systems	can	be	found	in	Annex	G.	

Version	 1	 of	 ItemInfoBox	 should	 only	 be	 used	 when	 support	 for	 a	 large	 number	 of	
itemInfoEntries	(exceeding	65535)	is	required	or	expected	to	be	required.	

8.11.6.2 Syntax

aligned(8) class ItemInfoExtension(unsigned int(32) extension_type)
{
}

aligned(8) class FDItemInfoExtension() extends ItemInfoExtension (’fdel’)
{
 string content_location;
 string content_MD5;
 unsigned int(64) content_length;
 unsigned int(64) transfer_length;
 unsigned int(8) entry_count;
 for (i=1; i <= entry_count; i++)
 unsigned int(32) group_id;
}

aligned(8) class ItemInfoEntry
 extends FullBox(‘infe’, version, 0) {
 if ((version == 0) || (version == 1)) {
 unsigned int(16) item_ID;
 unsigned int(16) item_protection_index
 string item_name;
 string content_type;
 string content_encoding; //optional
 }
 if (version == 1) {
 unsigned int(32) extension_type; //optional
 ItemInfoExtension(extension_type); //optional
 }
 if (version >= 2) {
 if (version == 2) {
 unsigned int(16) item_ID;
 } else if (version == 3) {
 unsigned int(32) item_ID;
 }
 unsigned int(16) item_protection_index;
 unsigned int(32) item_type;

 string item_name;
 if (item_type==’mime’) {
 string content_type;
 string content_encoding; //optional
 } else if (item_type == ‘uri ‘) {
 string item_uri_type;
 }
 }
}

aligned(8) class ItemInfoBox
 extends FullBox(‘iinf’, version, 0) {
 if (version == 0) {
 unsigned int(16) entry_count;
 } else {
 unsigned int(32) entry_count;
 }
 ItemInfoEntry[entry_count] item_infos;
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 83

	

8.11.6.3 Semantics

item_id contains	either	0	for	the	primary	resource	(e.g.,	the	XML	contained	in	an	‘xml ‘	box)	or	
the	ID	of	the	item	for	which	the	following	information	is	defined.	

item_protection_index contains	 either	 0	 for	 an	 unprotected	 item,	 or	 the	 one‐based	 index	
into	the	item	protection	box	defining	the	protection	applied	to	this	item	(the	first	box	in	the	item	
protection	box	has	the	index	1).	

item_name	is	a	null‐terminated	string	in	UTF‐8	characters	containing	a	symbolic	name	of	the	item	
(source	file	for	file	delivery	transmissions).	

item_type is	 a	 32‐bit	 value,	 typically	 4	 printable	 characters,	 that	 is	 a	 defined	 valid	 item	 type	
indicator,	such	as	‘mime’	

content_type	is	a	null‐terminated	string	in	UTF‐8	characters	with	the	MIME	type	of	the	item.	If	
the	item	is	content	encoded	(see	below),	then	the	content	type	refers	to	the	item	after	content	
decoding.	

item_uri_type is	a	string	that	is	an	absolute	URI,	that	is	used	as	a	type	indicator.	
content_encoding	 is	 an	 optional	 null‐terminated	 string	 in	 UTF‐8	 characters	 used	 to	 indicate	

that	 the	binary	 file	 is	encoded	and	needs	 to	be	decoded	before	 interpreted.	The	values	are	as	
defined	 for	 Content‐Encoding	 for	HTTP/1.1.	 Some	possible	 values	 are	 “gzip”,	 “compress”	 and	
“deflate”.	An	empty	string	indicates	no	content	encoding.	Note	that	the	item	is	stored	after	the	
content	encoding	has	been	applied.	

extension_type is	a	printable	four‐character	code	that	identifies	the	extension	fields	of	version	
1	with	respect	to	version	0	of	the	Item	information	entry.	

content_location is	a	null‐terminated	string	in	UTF‐8	characters	containing	the	URI	of	the	file	
as	defined	in	HTTP/1.1	(RFC	2616).	

content_MD5 is	a	null‐terminated	string	in	UTF‐8	characters	containing	an	MD5	digest	of	the	file.	
See	HTTP/1.1	(RFC	2616)	and	RFC	1864.	

content_length gives	the	total	length	(in	bytes)	of	the	(un‐encoded)	file.	
transfer_length gives	the	total	length	(in	bytes)	of	the	(encoded)	file.	Note	that	transfer	length	

is	equal	to	content	length	if	no	content	encoding	is	applied	(see	above).	
entry_count provides	a	count	of	the	number	of	entries	in	the	following	array.	
group_ID indicates	a	file	group	to	which	the	file	item	(source	file)	belongs.	See	3GPP	TS	26.346	

for	more	details	on	file	groups.	

8.11.7 Additional Metadata Container Box

8.11.7.1 Definition

Box	Type:	 ‘meco’	
Container:	 File,	Movie	Box	(‘moov’),	or	Track	Box	(‘trak’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	additional	metadata	container	box	 includes	one	or	more	meta	boxes.	 It	 can	be	carried	at	 the	 top	
level	of	the	file,	in	the	Movie	Box	(‘moov’),	or	in	the	Track	Box	(‘trak’)	and	shall	only	be	present	if	it	
is	accompanied	by	a	meta	box	in	the	same	container.	A	meta	box	that	is	not	contained	in	the	additional	
metadata	 container	 box	 is	 the	 preferred	 (primary)	meta	 box.	Meta	 boxes	 in	 the	 additional	metadata	
container	box	complement	or	give	alternative	metadata	information.	The	usage	of	multiple	meta	boxes	
may	be	desirable	when,	e.g.,	a	single	handler	is	not	capable	of	processing	all	metadata.	All	meta	boxes	at	
a	 certain	 level,	 including	 the	preferred	one	and	 those	contained	 in	 the	additional	metadata	container	
box,	must	have	different	handler	types.	

ISO/IEC 14496-12:2015(E)

84	 ©	ISO/IEC	2015	–	All	rights	reserved

	

A	meta	box	contained	in	an	additional	metadata	container	box	shall	contain	a	primary	Item	box	or	the	
primary	 data	 box	 required	 by	 the	 handler	 (e.g.,	 an	 XML	 Box).	 It	 shall	 not	 include	 boxes	 or	 syntax	
elements	concerning	items	other	than	the	primary	item	indicated	by	the	present	primary	item	box	or	
XML	 box.	 URLs	 in	 a	meta	 box	 contained	 in	 an	 additional	metadata	 container	 box	 are	 relative	 to	 the	
context	of	the	preferred	meta	box.	

8.11.7.2 Syntax

aligned(8) class AdditionalMetadataContainerBox extends Box('meco') {
}

8.11.8 Metabox Relation Box

8.11.8.1 Definition

Box	Type:	 ‘mere’	
Container:	 Additional	Metadata	Container	Box	(‘meco’)	
Mandatory:	No	
Quantity:	 Zero	or	more	

The	metabox	relation	box	 indicates	a	relation	between	two	meta	boxes	at	 the	same	 level,	 i.e.,	 the	 top	
level	 of	 the	 file,	 the	Movie	Box,	 or	Track	Box.	The	 relation	between	 two	meta	boxes	 is	 unspecified	 if	
there	 is	no	metabox	relation	box	for	those	meta	boxes.	Meta	boxes	are	referenced	by	specifying	their	
handler	types.	

8.11.8.2 Syntax

aligned(8) class MetaboxRelationBox
 extends FullBox('mere', version=0, 0) {
 unsigned int(32) first_metabox_handler_type;
 unsigned int(32) second_metabox_handler_type;
 unsigned int(8) metabox_relation;
}

8.11.8.3 Semantics

first_metabox_handler_type indicates	the	first	meta	box	to	be	related.	
second_metabox_handler_type indicates	the	second	meta	box	to	be	related.	
metabox_relation indicates	the	relation	between	the	two	meta	boxes.	The	following	values	are	

defined:	
1 The	relationship	between	the	boxes	is	unknown	(which	is	the	default	when	this	box	

is	not	present);	

2 the	 two	 boxes	 are	 semantically	 un‐related	 (e.g.,	 one	 is	 presentation,	 the	 other	
annotation);	

3 the	two	boxes	are	semantically	related	but	complementary	(e.g.,	two	disjoint	sets	of	
meta‐data	expressed	in	two	different	meta‐data	systems);	

4 the	 two	 boxes	 are	 semantically	 related	 but	 overlap	 (e.g.,	 two	 sets	 of	 meta‐data	
neither	of	which	is	a	subset	of	the	other);	neither	is	‘preferred’	to	the	other;	

5 the	two	boxes	are	semantically	related	but	the	second	is	a	proper	subset	or	weaker	
version	of	the	first;	the	first	is	preferred;	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 85

	

6 the	two	boxes	are	semantically	related	and	equivalent	(e.g.,	two	essentially	identical	
sets	of	meta‐data	expressed	in	two	different	meta‐data	systems).	

8.11.9 URL Forms for meta boxes

When	 a	meta‐box	 is	 used,	 then	URLs	may	be	used	 to	 refer	 to	 items	 in	 the	meta‐box,	 either	using	 an	
absolute	URL,	or	using	a	relative	URL.	Absolute	URLs	may	only	be	used	to	refer	to	items	in	a	file‐level	
meta	box.	

When	 interpreting	data	 that	 is	 in	 the	 context	 of	 a	meta‐box	 (i.e.	 the	 file	 for	 a	 file‐level	meta‐box,	 the	
presentation	for	a	movie‐level	meta‐box,	or	the	track	for	a	track‐level	meta‐box),	the	items	in	the	meta‐
box	are	treated	as	shadowing	files	in	the	same	location	as	that	from	which	the	container	file	came.	This	
shadowing	means	 that	 a	 reference	 to	 another	 file	 in	 the	 same	 location	 as	 the	 container	 file	may	 be	
resolved	to	an	item	within	the	container	file	itself.	Items	can	be	addressed	within	the	container	file	by	
appending	a	fragment	to	the	URL	for	the	container	file	itself.	That	fragment	starts	with	the	“#”	character	
and	consists	of	either:	

b) item_ID=<n>,	identifying	the	item	by	its	ID	(the	ID	may	be	0	for	the	primary	resource);	

c) item_name=<item_name>,	when	the	item	information	box	is	used.	

If	 a	 fragment	 within	 the	 contained	 item	 must	 be	 addressed,	 then	 the	 initial	 “#”	 character	 of	 that	
fragment	is	replaced	by	“*”.	

Consider	 the	 following	 example:		
<http://a.com/d/v.qrv#item_name=tree.html*branch1>.	We	assume	that	v.qrv	 is	a	 file	
with	 a	meta‐box	 at	 the	 file	 level.	 First,	 the	 client	 strips	 the	 fragment	 and	 fetches	v.qrv	 from	 a.com	
using	HTTP.	It	then	inspects	the	top‐level	meta	box	and	adds	the	items	in	it,	logically,	to	its	cache	of	the	
directory	 “d”	 on	 a.com.	 It	 then	 re‐forms	 the	 URL	 as	 <http://a.com/d/tree.html#branch1>.	
Note	that	the	fragment	has	been	elevated	to	a	full	file	name,	and	the	first	“*”	has	been	transformed	back	
into	 a	 “#”.	 The	 client	 then	 either	 finds	 an	 item	 named	 tree.html	 in	 the	 meta	 box,	 or	 fetches	
tree.html	 from	a.com,	and	 it	 then	 finds	 the	anchor	“branch1”	within	tree.html.	 If	within	 that	
html,	a	file	was	referenced	using	a	relative	URL,	e.g.	“flower.gif”,	then	the	client	converts	this	to	an	
absolute	URL	using	the	normal	rules:		<http://a.com/d/flower.gif>	and	again	it	checks	to	see	if	
flower.gif	is	a	named	item	(and	hence	shadowing	a	separate	file	of	this	name),	and	then	if	it	is	not,	
fetches	flower.gif	from	a.com.	

8.11.10 Static Metadata

This	section	defines	the	storage	of	static	(un‐timed)	metadata	in	the	ISO	file	format	family.	

Reader	 support	 for	metadata	 in	 general	 is	 optional,	 and	 therefore	 it	 is	 also	 optional	 for	 the	 formats	
defined	here	or	elsewhere,	unless	made	mandatory	by	a	derived	specification.	

8.11.10.1 Simple textual

There	is	existing	support	for	simple	textual	tags	in	the	form	of	the	user‐data	boxes;	currently	only	one	is	
defined	–	the	copyright	notice.	Other	metadata	is	permitted	using	this	simple	form	if:	

ISO/IEC 14496-12:2015(E)

86	 ©	ISO/IEC	2015	–	All	rights	reserved

	

a) it	uses	a	registered	box‐type	or	it	uses	the	UUID	escape	(the	latter	is	permitted	today);	

b) it	 uses	 a	 registered	 tag,	 the	 equivalent	MPEG‐7	 construct	must	be	documented	 as	part	 of	 the	
registration.	

8.11.10.2 Other forms

When	other	forms	of	metadata	are	desired,	then	a	‘meta’	box	as	defined	above	may	be	included	at	the	
appropriate	 level	of	 the	document.	 If	 the	document	 is	 intended	to	be	primarily	a	metadata	document	
per	se,	then	the	meta	box	is	at	file	level.	If	the	metadata	annotates	an	entire	presentation,	then	the	meta	
box	is	at	the	movie	level;	an	entire	stream,	at	the	track	level.	

8.11.10.3 MPEG-7 metadata

MPEG‐7	metadata	is	stored	in	meta	boxes	to	this	specification.	

1) The	handler‐type	is	‘mp7t’	for	textual	metadata	in	Unicode	format;	

2) The	handler‐type	is	‘mp7b’	for	binary	metadata	compressed	in	the	BIM	format.	In	this	case,	the	
binary	XML	box	contains	the	configuration	information	immediately	followed	by	the	binarized	
XML.	

3) When	 the	 format	 is	 textual,	 there	 is	 either	 another	 box	 in	 the	 metadata	 container	 ‘meta’,	
called	‘xml ‘,	which	 contains	 the	 textual	MPEG‐7	document,	 or	 there	 is	 a	primary	 item	box	
identifying	the	item	containing	the	MPEG‐7	XML.	

4) When	the	format	is	binary,	there	is	either	another	box	in	the	metadata	container	‘meta’,	called	
‘bxml‘,	which	 contains	 the	binary	MPEG‐7	document,	 or	 a	primary	 item	box	 identifying	 the	
item	containing	the	MPEG‐7	binarized	XML.	

5) If	an	MPEG‐7	box	 is	used	at	 the	 file	 level,	 then	the	brand	‘mp71’	 should	be	a	member	of	 the	
compatible‐brands	list	in	the	file‐type	box.	

8.11.11 Item Data Box

8.11.11.1 Definition

Box	Type:		 ‘idat’	
Container:	 Metadata	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

This	box	contains	the	data	of	metadata	items	that	use	the	construction	method	indicating	that	an	item’s	
data	extents	are	stored	within	this	box.	

8.11.11.2 Syntax

aligned(8) class ItemDataBox extends Box(‘idat’) {
 bit(8) data[];
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 87

	

8.11.11.3 Semantics

data	is	the	contained	meta	data	

8.11.12 Item Reference Box

8.11.12.1 Definition

Box	Type:	 ‘iref’	
Container:	 Metadata	box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	item	reference	box	allows	the	linking	of	one	item	to	others	via	typed	references.	All	the	references	
for	 one	 item	of	 a	 specific	 type	 are	 collected	 into	 a	 single	 item	 type	 reference	 box,	whose	 type	 is	 the	
reference	type,	and	which	has	a	‘from	item	ID’	field	indicating	which	item	is	linked.	The	items	linked	to	
are	 then	represented	by	an	array	of	 ‘to	 item	 ID’s.	All	 these	single	 item	type	reference	boxes	are	 then	
collected	into	the	item	reference	box.	The	reference	types	defined	for	the	track	reference	box	defined	in	
8.3.3	 may	 be	 used	 here	 if	 appropriate,	 or	 other	 registered	 reference	 types.	 Version	 1	 of	
ItemReferenceBox	 with	 SingleItemReferenceBoxLarge	 should	 only	 be	 used	 when	 large	
from_item_ID	or	to_item_ID	values	(exceeding	65535)	are	required	or	expected	to	be	required.	

NOTE:	This	design	makes	it	fairly	easy	to	find	all	the	references	of	a	specific	type,	or	from	a	specific	item.	

An	item	reference	of	type	‘font’ may	be	used	to	indicate	that	an	item	uses	fonts	carried/defined	in	
the	referenced	item.	

8.11.12.2 Syntax

aligned(8) class SingleItemTypeReferenceBox(referenceType) extends
Box(referenceType) {
 unsigned int(16) from_item_ID;
 unsigned int(16) reference_count;
 for (j=0; j<reference_count; j++) {
 unsigned int(16) to_item_ID;
 }
}

aligned(8) class SingleItemTypeReferenceBoxLarge(referenceType) extends
Box(referenceType) {
 unsigned int(32) from_item_ID;
 unsigned int(16) reference_count;
 for (j=0; j<reference_count; j++) {
 unsigned int(32) to_item_ID;
 }
}

aligned(8) class ItemReferenceBox extends FullBox(‘iref’, version, 0) {
 if (version==0) {
 SingleItemTypeReferenceBox references[];
 } else if (version==1) {
 SingleItemTypeReferenceBoxLarge references[];
 }
}

8.11.12.3 Semantics

reference_type contains	an	indication	of	the	type	of	the	reference	
from_item_id contains	the	ID	of	the	item	that	refers	to	other	items	

ISO/IEC 14496-12:2015(E)

88	 ©	ISO/IEC	2015	–	All	rights	reserved

	

reference_count is	the	number	of	references	
to_item_id contains	the	ID	of	the	item	referred	to	

8.11.13 Auxiliary video metadata

An	 auxiliary	 video	 track	 used	 for	 depth	 or	 parallax	 information	may	 carry	 a	meta‐data	 item	 of	 type	
‘auvd’	(auxiliary	video	descriptor);	the	data	of	that	item	is	exactly	one	si_rbsp()	as	specified	in	ISO/IEC	
23002‐3.	 (Note	 that	 si_rbsp()	 is	 externally	 framed,	 and	 the	 length	 is	 supplied	 by	 the	 item	 location	
information	 in	 the	 file	 format).	 There	may	 be	more	 than	 one	 of	 these	meta‐data	 items	 (e.g.	 one	 for	
parallax	info	and	one	for	depth,	in	the	case	that	the	same	stream	serves).	

8.12 Support for Protected Streams

This	 section	 documents	 the	 file‐format	 transformations	which	 are	 used	 for	 protected	 content.	 These	
transformations	can	be	used	under	several	circumstances:	

 They	must	be	used	when	the	content	has	been	transformed	(e.g.	by	encryption)	in	such	a	way	
that	it	can	no	longer	be	decoded	by	the	normal	decoder;	

 They	may	 be	 used	when	 the	 content	 should	 only	 be	 decoded	when	 the	 protection	 system	 is	
understood	and	implemented.	

The	 transformation	 functions	 by	 encapsulating	 the	 original	 media	 declarations.	 The	 encapsulation	
changes	 the	 four‐character‐code	 of	 the	 sample	 entries,	 so	 that	 protection‐unaware	 readers	 see	 the	
media	stream	as	a	new	stream	format.	

Because	the	format	of	a	sample	entry	varies	with	media‐type,	a	different	encapsulating	four‐character‐
code	is	used	for	each	media	type	(audio,	video,	text	etc.).	They	are:	

Stream (Track) Type Sample-Entry Code

Video	 encv	

Audio	 enca	

Text	 enct	

System	 encs	

	

The	transformation	of	the	sample	description	is	described	by	the	following	procedure:	

1) The	 four‐character‐code	 of	 the	 sample	 description	 is	 replaced	 with	 a	 four‐character‐code	
indicating	protection	encapsulation:	these	codes	vary	only	by	media‐type.	For	example,	‘mp4v’	
is	replaced	with	‘encv’	and	‘mp4a’	is	replaced	with	‘enca’.	

2) A	ProtectionSchemeInfoBox	(defined below)	is	added	to	the	sample	description,	leaving	all	
other	boxes	unmodified.	

3) The	 original	 sample	 entry	 type	 (four‐character‐code)	 is	 stored	 within	 the	
ProtectionSchemeInfoBox,	 in	 a	 new	 box	 called	 the	 OriginalFormatBox	 (defined
below);	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 89

	

There	 are	 then	 three	 methods	 for	 signalling	 the	 nature	 of	 the	 protection,	 which	 may	 be	 used	
individually	or	in	combination.	

1) When	MPEG‐4	systems	is	used,	then	IPMP	must	be	used	to	signal	that	the	streams	are	protected.	

2) IPMP	descriptors	may	also	be	used	outside	the	MPEG‐4	systems	context	using	boxes	containing	
IPMP	descriptors.	

3) The	protection	applied	may	also	be	described	using	the	scheme	type	and	information	boxes.	

When	 IPMP	 is	 used	 outside	 of	 MPEG‐4	 systems,	 then	 a	 ‘global’	 IPMPControlBox	 may	 also	 occur	
within	the	‘moov’	atom.	

NOTE	When	MPEG‐4	 systems	 is	used,	an	MPEG‐4	 systems	 terminal	 can	effectively	 treat,	 for	example,	‘encv’	
with	an	Original	Format	of	‘mp4v’	exactly	the	same	as	‘mp4v’,	by	using	the	IPMP	descriptors.	

8.12.1 Protection Scheme Information Box

8.12.1.1 Definition

Box	Types:	 ‘sinf’	
Container:	 Protected	Sample	Entry,	or	Item	Protection	Box	(‘ipro’)	
Mandatory:	Yes	
Quantity:	 One	or	More	

The	Protection	Scheme	Information	Box	contains	all	 the	 information	required	both	to	understand	the	
encryption	transform	applied	and	 its	parameters,	and	also	 to	 find	other	 information	such	as	 the	kind	
and	location	of	the	key	management	system.	It	also	documents	the	original	(unencrypted)	format	of	the	
media.	The	Protection	Scheme	 Information	Box	 is	a	 container	Box.	 It	 is	mandatory	 in	a	 sample	entry	
that	uses	a	code	indicating	a	protected	stream.	

When	used	in	a	protected	sample	entry,	this	box	must	contain	the	original	format	box	to	document	the	
original	format.	At	least	one	of	the	following	signalling	methods	must	be	used	to	identify	the	protection	
applied:	

a) MPEG‐4	 systems	 with	 IPMP:	 	 no	 other	 boxes,	 when	 IPMP	 descriptors	 in	 MPEG‐4	 systems	
streams	are	used;	

b) Scheme	signalling:	 	a	SchemeTypeBox	and	SchemeInformationBox,	when	these	are	used	
(either	both	must	occur,	or	neither).	

At	 least	one	protection	scheme	 information	box	must	occur	 in	a	protected	sample	entry.	When	more	
than	one	occurs,	 they	are	equivalent,	alternative,	descriptions	of	 the	same	protection.	Readers	should	
choose	one	to	process.	

ISO/IEC 14496-12:2015(E)

90	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.12.1.2 Syntax

aligned(8) class ProtectionSchemeInfoBox(fmt) extends Box('sinf') {
 OriginalFormatBox(fmt) original_format;

 SchemeTypeBox scheme_type_box; // optional
 SchemeInformationBox info; // optional
}

8.12.2 Original Format Box

8.12.2.1 Definition

Box	Types:	 ‘frma’	
Container:	 Protection	Scheme	Information	Box	(‘sinf’),	Restricted	Scheme	Information	Box	(‘rinf’),	
or		
	 	 	 Complete	Track	Information	Box	(‘cinf’)	
Mandatory:	 Yes	when	used	in	a	protected	sample	entry,	in	a	restricted	sample	entry,	or	
	 	 	 in	a	sample	entry	for	an	incomplete	track.	
Quantity:	 Exactly	one.	

The	 Original	 Format	 Box	 ‘frma’	 contains	 the	 four‐character‐code	 of	 the	 original	 un‐transformed	
sample	description:	

8.12.2.2 Syntax

aligned(8) class OriginalFormatBox(codingname) extends Box ('frma') {
 unsigned int(32) data_format = codingname;
 // format of decrypted, encoded data (in case of protection)
 // or un-transformed sample entry (in case of restriction
 // and complete track information)
}

8.12.2.3 Semantics

data_format	is	the	four‐character‐code	of	the	original	un‐transformed	sample	entry	(e.g.	‘mp4v’	
if	the	stream	contains	protected	or	restricted	MPEG‐4	visual	material).	

8.12.3 IPMPInfoBox

(empty	sub‐clause)	

8.12.4 IPMP Control Box

(empty	sub‐clause)	

8.12.5 Scheme Type Box

8.12.5.1 Definition

Box	Types:	 ‘schm’	
Container:	 Protection	Scheme	Information	Box	(‘sinf’),	Restricted	Scheme	Information	Box	
(‘rinf’),	
	 or	SRTP	Process	box	(‘srpp‘)	
Mandatory:	No	
Quantity:	 Zero	or	one	in	‘sinf’,	depending	on	the	protection	structure;	Exactly	one	in	‘rinf’	and	‘srpp’	

The	Scheme	Type	Box	(‘schm’)	identifies	the	protection	or	restriction	scheme.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 91

	

8.12.5.2 Syntax

aligned(8) class SchemeTypeBox extends FullBox('schm', 0, flags) {
 unsigned int(32) scheme_type; // 4CC identifying the scheme
 unsigned int(32) scheme_version; // scheme version
 if (flags & 0x000001) {
 unsigned int(8) scheme_uri[]; // browser uri
 }
}

8.12.5.3 Semantics

scheme_type	is	the	code	defining	the	protection	or	restriction	scheme.	
scheme_version	is	the	version	of	the	scheme	(used	to	create	the	content)	
scheme_URI	 allows	 for	 the	 option	 of	 directing	 the	 user	 to	 a	 web‐page	 if	 they	 do	 not	 have	 the	

scheme	 installed	 on	 their	 system.	 It	 is	 an	 absolute	URI	 formed	 as	 a	 null‐terminated	 string	 in	
UTF‐8	characters.	

8.12.6 Scheme Information Box

8.12.6.1 Definition

Box	Types:	 ‘schi’	
Container:	 Protection	Scheme	Information	Box	(‘sinf’),	Restricted	Scheme	Information	Box	
(‘rinf’),	
	 or	SRTP	Process	box	(‘srpp‘)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	Scheme	Information	Box	is	a	container	Box	that	is	only	interpreted	by	the	scheme	being	used.	Any	
information	the	encryption	or	restriction	system	needs	is	stored	here.	The	content	of	this	box	is	a	series	
of	boxes	whose	type	and	format	are	defined	by	the	scheme	declared	in	the	Scheme	Type	Box.	

8.12.6.2 Syntax

aligned(8) class SchemeInformationBox extends Box('schi') {
 Box scheme_specific_data[];
}

8.13 File Delivery Format Support

8.13.1 Introduction

Files	 intended	 for	 transmission	 over	ALC/LCT	 or	 FLUTE	 are	 stored	 as	 items	 in	 a	 top‐level	meta	 box	
(‘meta’).	The	item	location	box	(‘iloc’)	specifies	the	actual	storage	location	of	each	item	within	the	
container	file	as	well	as	the	file	size	of	each	item.	File	name,	content	type	(MIME	type),	etc.,	of	each	item	
are	provided	by	version	1	of	the	item	information	box	(‘iinf’).	

Pre‐computed	FEC	reservoirs	are	stored	as	additional	items	in	the	meta	box.	If	a	source	file	is	split	into	
several	 source	 blocks,	 FEC	 reservoirs	 for	 each	 source	 block	 are	 stored	 as	 separate	 items.	 The	
relationship	between	FEC	 reservoirs	 and	original	 source	 items	 is	 recorded	 in	 the	partition	entry	box	
('paen')	located	in	the	FD	item	information	box	('fiin').	

Pre‐composed	File	reservoirs	are	stored	as	additional	items	in	the	container	file.	If	a	source	file	is	split	
into	several	 source	blocks,	each	source	block	 is	 stored	as	a	 separate	 item	called	a	File	 reservoir.	The	

ISO/IEC 14496-12:2015(E)

92	 ©	ISO/IEC	2015	–	All	rights	reserved

	

relationship	 between	File	 reservoirs	 and	original	 source	 items	 is	 recorded	 in	 the	partition	 entry	 box	
('paen')	located	in	the	FD	item	information	box	('fiin').	

See	subclause	9.2	for	more	details	on	the	usage	of	the	file	delivery	format.	

8.13.2 FD Item Information Box

8.13.2.1 Definition

Box	Type:	 ‘fiin’	
Container:	 Meta	Box	(‘meta’)	
Mandatory:	No	
Quantity:	 Zero	or	one	

The	 FD	 item	 information	 box	 is	 optional,	 although	 it	 is	 mandatory	 for	 files	 using	 FD	 hint	 tracks.	 It	
provides	information	on	the	partitioning	of	source	files	and	how	FD	hint	tracks	are	combined	into	FD	
sessions.	 Each	 partition	 entry	 provides	 details	 on	 a	 particular	 file	 partitioning,	 FEC	 encoding	 and	
associated	 File	 and	 FEC	 reservoirs.	 It	 is	 possible	 to	 provide	 multiple	 entries	 for	 one	 source	 file	
(identified	by	its	item	ID)	if	alternative	FEC	encoding	schemes	or	partitionings	are	used	in	the	file.	All	
partition	entries	are	implicitly	numbered	and	the	first	entry	has	number	1.	

8.13.2.2 Syntax

aligned(8) class PartitionEntry extends Box('paen') {
 FilePartitionBox blocks_and_symbols;
 FECReservoirBox FEC_symbol_locations; //optional
 FileReservoirBox File_symbol_locations; //optional
}

aligned(8) class FDItemInformationBox
 extends FullBox('fiin', version = 0, 0) {
 unsigned int(16) entry_count;
 PartitionEntry partition_entries[entry_count];
 FDSessionGroupBox session_info; //optional
 GroupIdToNameBox group_id_to_name; //optional
}

8.13.2.3 Semantics

entry_count provides	a	count	of	the	number	of	entries	in	the	following	array.	

The	semantics	of	the	boxes	are	described	where	the	boxes	are	documented.	

8.13.3 File Partition Box

8.13.3.1 Definition

Box	Type:	 ‘fpar’	
Container:	 Partition	Entry	(‘paen’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	File	Partition	box	identifies	the	source	file	and	provides	a	partitioning	of	that	file	into	source	blocks	
and	symbols.	Further	information	about	the	source	file,	e.g.,	filename,	content	location	and	group	IDs,	is	
contained	in	the	Item	Information	box	('iinf'),	where	the	Item	Information	entry	corresponding	to	
the	 item	 ID	of	 the	 source	 file	 is	of	version	1	 and	 includes	a	File	Delivery	 Item	 Information	Extension	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 93

	

('fdel').	Version	1	of	FilePartitionBox	should	only	be	used	when	support	for	large	item_ID	or	
entry_count	values	(exceeding	65535)	is	required	or	expected	to	be	required.	

8.13.3.2 Syntax

aligned(8) class FilePartitionBox
 extends FullBox('fpar', version, 0) {
 if (version == 0) {
 unsigned int(16) item_ID;
 } else {
 unsigned int(32) item_ID;
 }
 unsigned int(16) packet_payload_size;
 unsigned int(8) reserved = 0;
 unsigned int(8) FEC_encoding_ID;
 unsigned int(16) FEC_instance_ID;
 unsigned int(16) max_source_block_length;
 unsigned int(16) encoding_symbol_length;
 unsigned int(16) max_number_of_encoding_symbols;
 string scheme_specific_info;
 if (version == 0) {
 unsigned int(16) entry_count;
 } else {
 unsigned int(32) entry_count;
 }
 for (i=1; i <= entry_count; i++) {
 unsigned int(16) block_count;
 unsigned int(32) block_size;
 }
}

8.13.3.3 Semantics

item_ID references	the	item	in	the	item	location	box	('iloc')	that	the	file	partitioning	applies	
to.	

packet_payload_size gives	 the	 target	 ALC/LCT	 or	 FLUTE	 packet	 payload	 size	 of	 the	
partitioning	algorithm.	Note	that	UDP	packet	payloads	are	larger,	as	they	also	contain	ALC/LCT	
or	FLUTE	headers.	

FEC_encoding_ID identifies	 the	FEC	encoding	scheme	and	 is	subject	 to	 IANA	registration	(see	
RFC	5052).	 Note	 that	 i)	 value	 zero	 corresponds	 to	 the	 "Compact	 No‐Code	 FEC	 scheme"	 also	
known	 as	 "Null‐FEC"	 (RFC	 3695);	 ii)	 value	 one	 corresponds	 to	 the	 “MBMS	 FEC”	 (3GPP	 TS	
26.346);	 iii)	 for	 values	 in	 the	 range	 of	 0	 to	 127,	 inclusive,	 the	 FEC	 scheme	 is	 Fully‐Specified,	
whereas	for	values	in	the	range	of	128	to	255,	inclusive,	the	FEC	scheme	is	Under‐Specified.	

FEC_instance_ID provides	a	more	specific	identification	of	the	FEC	encoder	being	used	for	an	
Under‐Specified	FEC	scheme.	This	value	should	be	set	to	zero	for	Fully‐Specified	FEC	schemes	
and	 shall	 be	 ignored	when	 parsing	 a	 file	with	FEC_encoding_ID	 in	 the	 range	 of	 0	 to	 127,	
inclusive.	FEC_instance_ID	is	scoped	by	the	FEC_encoding_ID.	See	RFC	5052	for	further	
details.	

max_source_block_length gives	the	maximum	number	of	source	symbols	per	source	block.	
encoding_symbol_length gives	 the	 size	 (in	 bytes)	 of	 one	 encoding	 symbol.	 All	 encoding	

symbols	of	one	item	have	the	same	length,	except	the	last	symbol	which	may	be	shorter.	
max_number_of_encoding_symbols gives	 the	 maximum	 number	 of	 encoding	 symbols	 that	

can	be	generated	for	a	source	block	 for	those	FEC	schemes	 in	which	the	maximum	number	of	
encoding	symbols	is	relevant,	such	as	FEC	encoding	ID	129	defined	in	RFC	5052.	For	those	FEC	
schemes	in	which	the	maximum	number	of	encoding	symbols	is	not	relevant,	the	semantics	of	
this	field	is	unspecified.	

scheme_specific_info is	 a	 base64‐encoded	 null‐terminated	 string	 of	 the	 scheme‐specific	
object	 transfer	 information	 (FEC‐OTI‐Scheme‐Specific‐Info).	 The	 definition	 of	 the	 information	
depends	on	the	FEC	encoding	ID.	

ISO/IEC 14496-12:2015(E)

94	 ©	ISO/IEC	2015	–	All	rights	reserved

	

entry_count gives	the	number	of	entries	in	the	list	of	(block_count,	block_size)	pairs	that	
provides	 a	 partitioning	 of	 the	 source	 file.	 Starting	 from	 the	 beginning	 of	 the	 file,	 each	 entry	
indicates	how	the	next	segment	of	the	file	is	divided	into	source	blocks	and	source	symbols.	

block_count indicates	the	number	of	consecutive	source	blocks	of	size	block_size.	
block_size indicates	 the	 size	 of	 a	 block	 (in	 bytes).	 A	 block_size	 that	 is	 not	 a	 multiple	 of	 the	

encoding_symbol_length	symbol	size	 indicates	with	Compact	No‐Code	FEC	that	the	 last	source	
symbols	includes	padding	that	is	not	stored	in	the	item.	With	MBMS	FEC	(3GPP	TS	26.346)	the	
padding	may	extend	across	multiple	symbols	but	the	size	of	padding	should	never	be	more	than	
encoding_symbol_length.	

8.13.4 FEC Reservoir Box

8.13.4.1 Definition

Box	Type:	 ‘fecr’	
Container:	 Partition	Entry	(‘paen’)	
Mandatory:	No	
Quantity:	 Zero	or	One	

The	FEC	reservoir	box	associates	the	source	file	identified	in	the	file	partition	box	('fpar')	with	FEC	
reservoirs	stored	as	additional	items.	It	contains	a	list	that	starts	with	the	first	FEC	reservoir	associated	
with	the	first	source	block	of	the	source	file	and	continues	sequentially	through	the	source	blocks	of	the	
source	 file.	 Version	 1	 of	FECReservoirBox	 should	 only	 be	 used	when	 support	 for	 large	item_ID	
values	and	entry_count	(exceeding	65535)	is	required	or	expected	to	be	required.	

8.13.4.2 Syntax

aligned(8) class FECReservoirBox
 extends FullBox('fecr', version, 0) {
 if (version == 0) {
 unsigned int(16) entry_count;
 } else {
 unsigned int(32) entry_count;
 }
 for (i=1; i <= entry_count; i++) {
 if (version == 0) {
 unsigned int(16) item_ID;
 } else {
 unsigned int(32) item_ID;
 }
 unsigned int(32) symbol_count;
 }
}

8.13.4.3 Semantics

entry_count gives	the	number	of	entries	in	the	following	list.	An	entry	count	here	should	match	
the	total	number	of	blocks	in	the	corresponding	file	partition	box.	

item_ID indicates	the	location	of	the	FEC	reservoir	associated	with	a	source	block.	
symbol_count indicates	the	number	of	repair	symbols	contained	in	the	FEC	reservoir.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 95

	

8.13.5 FD Session Group Box

8.13.5.1 Definition

Box	Type:	 ‘segr’	
Container:	 FD	Information	Box	(‘fiin’)	
Mandatory:	No	
Quantity:	 Zero	or	One	

The	FD	session	group	box	 is	optional,	although	it	 is	mandatory	 for	 files	containing	more	than	one	FD	
hint	 track.	 It	 contains	 a	 list	 of	 sessions	 as	well	 as	 all	 file	 groups	 and	 hint	 tracks	 that	 belong	 to	 each	
session.	An	FD	session	sends	simultaneously	over	all	FD	hint	tracks	(channels)	that	are	listed	in	the	FD	
session	group	box	for	a	particular	FD	session.	

Only	one	session	group	should	be	processed	at	any	time.	The	first	 listed	hint	track	in	a	session	group	
specifies	 the	 base	 channel.	 If	 the	 server	 has	 no	 preference	 between	 the	 session	 groups,	 the	 default	
choice	should	be	the	first	session	group.	The	group	IDs	of	all	file	groups	containing	the	files	referenced	
by	the	hint	tracks	shall	be	included	in	the	list	of	file	groups.	The	file	group	IDs	can	in	turn	be	translated	
into	file	group	names	(using	the	group	ID	to	name	box)	that	can	be	included	by	the	server	in	FDTs.	

8.13.5.2 Syntax

aligned(8) class FDSessionGroupBox extends Box('segr') {
 unsigned int(16) num_session_groups;
 for(i=0; i < num_session_groups; i++) {
 unsigned int(8) entry_count;
 for (j=0; j < entry_count; j++) {
 unsigned int(32) group_ID;
 }
 unsigned int(16) num_channels_in_session_group;
 for(k=0; k < num_channels_in_session_group; k++) {
 unsigned int(32) hint_track_id;
 }
 }
}

8.13.5.3 Semantics

num_session_groups specifies	the	number	of	session	groups.	
entry_count gives	the	number	of	entries	in	the	following	list	comprising	all	file	groups	that	the	

session	 group	 complies	 with.	 The	 session	 group	 contains	 all	 files	 included	 in	 the	 listed	 file	
groups	as	specified	by	the	item	information	entry	of	each	source	file.	Note	that	the	FDT	for	the	
session	group	should	only	contain	those	groups	that	are	listed	in	this	structure.	

group_ID indicates	a	file	group	that	the	session	group	complies	with.	
num_channels_in_session_groups specifies	 the	 number	 of	 channels	 in	 the	 session	 group.	

The	value	of	num_channels_in_session_groups	shall	be	a	positive	integer.	
hint_track_ID specifies	the	track	ID	of	the	FD	hint	track	belonging	to	a	particular	session	group.	

Note	that	one	FD	hint	track	corresponds	to	one	LCT	channel.	

ISO/IEC 14496-12:2015(E)

96	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.13.6 Group ID to Name Box

8.13.6.1 Definition

Box	Type:	 ‘gitn’	
Container:	 FD	Information	Box	(‘fiin’)	
Mandatory:	No	
Quantity:	 Zero	or	One	

The	 Group	 ID	 to	Name	 box	 associates	 file	 group	 names	 to	 file	 group	 IDs	 used	 in	 the	 version	 1	 item	
information	entries	in	the	item	information	box	('iinf').	

8.13.6.2 Syntax

aligned(8) class GroupIdToNameBox
 extends FullBox('gitn', version = 0, 0) {
 unsigned int(16) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) group_ID;
 string group_name;
 }
}

8.13.6.3 Semantics

entry_count gives	the	number	of	entries	in	the	following	list.	
group_ID indicates	a	file	group.	
group_name is	a	null‐terminated	string	in	UTF‐8	characters	containing	a	file	group	name.	

8.13.7 File Reservoir Box

8.13.7.1 Definition

Box	Type:	 ‘fire’	
Container:	 Partition	Entry	(‘paen’)	
Mandatory:	 No	
Quantity:	 Zero	or	One	

The	 File	 reservoir	 box	 associates	 the	 source	 file	 identified	 in	 the	 file	 partition	 box	 ('fpar')	 with	 File	
reservoirs	stored	as	additional	items.	It	contains	a	list	that	starts	with	the	first	File	reservoir	associated	
with	the	first	source	block	of	the	source	file	and	continues	sequentially	through	the	source	blocks	of	the	
source	file.	Version	1	of	FileReservoirBox should	only	be	used	when	support	for	large	item_ID	
or	entry_count	values	(exceeding	65535)	is	required	or	expected	to	be	required.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 97

	

8.13.7.2 Syntax

aligned(8) class FileReservoirBox
 extends FullBox('fire', version, 0) {
 if (version == 0) {
 unsigned int(16) entry_count;
 } else {
 unsigned int(32) entry_count;
 }
 for (i=1; i <= entry_count; i++) {
 if (version == 0) {
 unsigned int(16) item_ID;
 } else {
 unsigned int(32) item_ID;
 }
 unsigned int(32) symbol_count;
 }
}

8.13.7.3 Semantics

entry_count gives	the	number	of	entries	in	the	following	list.	An	entry	count	here	should	match	
the	total	number	or	blocks	in	the	corresponding	file	partition	box.	

item_ID indicates	the	location	of	the	File	reservoir	associated	with	a	source	block.	
symbol_count indicates	the	number	of	source	symbols	contained	in	the	File	reservoir.	

8.14 Sub tracks

8.14.1 Introduction

Sub	tracks	are	used	to	assign	parts	of	tracks	to	alternate	and	switch	groups	in	the	same	way	as	(entire)	
tracks	can	be	assigned	to	alternate	and	switch	groups	to	indicate	whether	those	tracks	are	alternatives	
to	 each	 other	 and	whether	 it	makes	 sense	 to	 switch	 between	 them	 during	 a	 session.	 Sub	 tracks	 are	
suitable	for	layered	media,	e.g.,	SVC	and	MVC,	where	media	alternatives	often	are	incommensurate	with	
track	structures.	By	defining	alternate	and	switch	groups	at	sub‐track	level	it	is	possible	to	use	existing	
rules	 for	media	selection	and	switching	 for	 such	 layered	codecs.	The	over‐all	 syntax	 is	generic	 for	all	
kinds	 of	 media	 and	 backward	 compatible	 with	 track‐level	 definitions.	 Sub‐track	 level	 alternate	 and	
switch	groups	use	the	same	numbering	as	track	level	groups.	The	numberings	are	global	over	all	tracks	
such	that	groups	can	be	defined	across	track	and	sub‐track	boundaries.	

In	order	to	define	sub	tracks,	media‐specific	definitions	are	required.	Definitions	for	SVC	and	MVC	are	
specified	in	the	AVC	file	format	(ISO/IEC	14496‐15).	Another	way	is	to	define	sample	groups	and	map	
them	to	sub	tracks	using	the	Sub	Track	Sample	Group	box	defined	here.	The	syntax	can	also	be	extended	
to	include	other	media‐specific	definitions.	

For	each	sub	track	that	shall	be	defined	a	Sub	Track	box	shall	be	included	in	the	User	Data	box	of	the	
corresponding	track.	The	Sub	Track	box	contains	objects	that	define	and	provide	information	about	a	
sub	track	in	the	same	track.	The	Track	Selection	box	for	this	same	track	is	already	located	here.	

8.14.2 Backward compatibility

The	default	 is	 to	assign	alternate	and	switch	groups	 to	0	 (zero)	 for	 (entire)	 tracks,	which	means	 that	
there	 is	 no	 information	 on	 alternate	 and/or	 switch	 groups	 for	 those	 (entire)	 tracks.	 However,	 file	
readers	that	are	aware	of	sub‐track	definitions	will	be	able	to	 find	sub‐track	information	on	alternate	
and	switch	groups	even	if	the	track	indication	is	set	to	0.	This	way	it	is	possible	to	indicate	that	a	file	can	

ISO/IEC 14496-12:2015(E)

98	 ©	ISO/IEC	2015	–	All	rights	reserved

	

be	used	by	 legacy	 readers	by	 including	 the	appropriate	brand	 in	 the	 file	 type	box.	A	 file	 creator	 that	
requires	a	reader	to	be	aware	of	sub‐track	information	should	not	include	legacy	brands.	

The	same	method	of	assigning	sub	track	information	can	also	be	applied	if	all	parts	of	a	track	except	a	
sub	 track	belong	 to	 the	same	alternate	or	 switch	group.	Then	 the	overall	definitions	can	be	made	on	
track	 level	 as	 usual	 and	 specific	 assignments	 can	be	made	 at	 sub‐track	 level.	 For	 sub	 tracks	without	
specific	 assignments,	 track	 level	 assignments	 apply	 by	 default.	 As	 before,	 if	 a	 file	 creator	 requires	 a	
reader	 to	 be	 aware	 of	 sub‐track	 information	 it	 should	 not	 include	 legacy	 brands	 (which	 would	
otherwise	indicate	that	sub	track	information	can	be	skipped).	

8.14.3 Sub Track box

8.14.3.1 Definition

Box	Type:	 ‘strk’	
Container:	 User	Data	box	(‘udta’)	of	the	corresponding	Track	box	(‘trak’)		
Mandatory:	 No	
Quantity:	 Zero	or	more	

This	box	contains	objects	that	define	and	provide	information	about	a	sub	track	in	the	present	track.	

8.14.3.2 Syntax

aligned(8) class SubTrack extends Box(‘strk’) {
}

8.14.4 Sub Track Information box

8.14.4.1 Definition

Box	Type:	 ‘stri’	
Container:	 Sub	Track	box	(‘strk’)	
Mandatory:	 Yes	
Quantity:	 One	

8.14.4.2 Syntax

aligned(8) class SubTrackInformation
 extends FullBox(‘stri’, version = 0, 0){
 template int(16) switch_group = 0;
 template int(16) alternate_group = 0;
 template unsigned int(32) sub_track_ID = 0;
 unsigned int(32) attribute_list[]; // to the end of the box
}

8.14.4.3 Semantics

switch_group is	an	integer	that	specifies	a	group	or	collection	of	tracks	and/or	sub	tracks.	If	this	
field	is	0	(default	value),	then	there	is	no	information	on	whether	the	sub	track	can	be	used	for	
switching	 during	 playing	 or	 streaming.	 If	 this	 integer	 is	 not	 0	 it	 shall	 be	 the	 same	 for	 tracks	
and/or	sub	tracks	that	can	be	used	for	switching	between	each	other.	Tracks	that	belong	to	the	
same	switch	group	shall	belong	to	the	same	alternate	group.	A	switch	group	may	have	only	one	
member.	

alternate_group is	an	integer	that	specifies	a	group	or	collection	of	tracks	and/or	sub	tracks.	If	
this	 field	 is	 0	 (default	 value),	 then	 there	 is	 no	 information	 on	 possible	 relations	 to	 other	
tracks/sub‐tracks.	If	this	field	is	not	0,	it	should	be	the	same	for	tracks/sub‐tracks	that	contain	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 99

	

alternate	data	 for	one	another	 and	different	 for	 tracks/sub‐tracks	belonging	 to	different	 such	
groups.	Only	one	track/sub‐track	within	an	alternate	group	should	be	played	or	streamed	at	any	
one	time.	

sub_track_ID is	an	integer.	A	non‐zero	value	uniquely	identifies	the	sub	track	locally	within	the	
track.	A	zero	value	(default)	means	that	sub	track	ID	is	not	assigned.	

attribute_list is	a	list,	to	the	end	of	the	box,	of	attributes.	The	attributes	in	this	list	should	be	
used	 as	 descriptions	 of	 sub	 tracks	 or	 differentiating	 criteria	 for	 tracks	 and	 sub	 tracks	 in	 the	
same	alternate	or	switch	group.	

The	following	attributes	are	descriptive:	

Name Attribut
e

Description

Temporal	
scalability	

‘tesc
’	

The	sub‐track	can	be	temporally	scaled.	

Fine‐grain	SNR	
scalability	

‘fgsc
’	

The	sub‐track	can	be	scaled	in	terms	of	quality.	

Coarse‐grain	SNR	
scalability	

‘cgsc
’	

The	sub‐track	can	be	scaled	in	terms	of	quality.	

Spatial	scalability	 ‘spsc
’	

The	sub‐track	can	be	spatially	scaled.		

Region‐of‐interest	
scalability	

‘resc
’	

The	sub‐track	can	be	region‐of‐interest	scaled.	

View	scalability	 ‘vwsc
’

The	 sub‐track	 can	 be	 scaled	 in	 terms	 of	 number	 of	
views.	

	

The	following	attributes	are	differentiating:	

Name Attribut
e

Pointer

Bitrate	 ‘bitr
’	

Total	 size	 of	 the	 samples	 in	 the	 track	 divided	 by	 the	
duration	in	the	track	header	box	

Frame	rate	 ‘frar
’	

Number	of	samples	in	the	track	divided	by	duration	in	
the	track	header	box	

Number	of	views	 ‘nvws
’

Number	of	views	in	the	sub	track	

	

ISO/IEC 14496-12:2015(E)

100	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.14.5 Sub Track Definition box

8.14.5.1 Definition

Box	Type:	 ‘strd’	
Container:	 Sub	Track	box	(‘strk’)	
Mandatory:	 Yes	
Quantity:	 One	

This	box	contains	objects	that	provide	a	definition	of	the	sub	track.	

8.14.5.2 Syntax

aligned(8) class SubTrackDefinition extends Box(‘strd’) {
}

8.14.6 Sub Track Sample Group box

8.14.6.1 Definition

Box	Type:	 ‘stsg’	
Container:	 Sub	Track	Definition	box	(‘strd’)	
Mandatory:	 No	
Quantity:	 Zero	or	more	

This	box	defines	a	sub	track	as	one	or	more	sample	groups	by	referring	to	the	corresponding	sample	
group	descriptions	describing	the	samples	of	each	group.	

8.14.6.2 Syntax

aligned(8) class SubTrackSampleGroupBox
 extends FullBox(‘stsg’, 0, 0){
 unsigned int(32) grouping_type;
 unsigned int(16) item_count;
 for(i = 0; i< item_count; i++)
 unsigned int(32) group_description_index;
}

8.14.6.3 Semantics

grouping_type is	an	integer	that	identifies	the	sample	grouping.	The	value	shall	be	the	same	as	
in	the	corresponding	SampletoGroup	and	SampleGroupDescription	boxes.	

item_count counts	the	number	of	sample	groups	listed	in	this	box.	
group_description_index is	an	integer	that	gives	the	index	of	the	sample	group	entry	which	

describes	the	samples	in	the	group.	

8.15 Post-decoder requirements on media

8.15.1 General

In	order	to	handle	situations	where	the	file	author	requires	certain	actions	on	the	player	or	renderer,	
this	 Subclause	 specifies	 a	 mechanism	 that	 enables	 players	 to	 simply	 inspect	 a	 file	 to	 find	 out	 such	
requirements	for	rendering	a	bitstream	and	stops	legacy	players	from	decoding	and	rendering	files	that	
require	further	processing.	The	mechanism	applies	to	any	type	of	video	codec.	In	particular	it	applies	to	
AVC	and	for	this	case	specific	signalling	is	defined	in	the	AVC	file	format	(ISO/IEC	14496‐15)	that	allows	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 101

	

a	 file	 author	 to	 list	 occurring	 SEI	 message	 IDs	 and	 distinguish	 between	 required	 and	 non‐required	
actions	for	the	rendering	process.	

The	mechanism	 is	 similar	 to	 the	 content	protection	 transformation	where	 sample	 entries	 are	hidden	
behind	generic	sample	entries,	‘encv’,	‘enca’,	etc.,	indicating	encrypted	or	encapsulated	media.	The	
analogous	 mechanism	 for	 restricted	 video	 uses	 a	 transformation	 with	 the	 generic	 sample	 entry	
‘resv’.	The	method	may	be	applied	when	the	content	should	only	be	decoded	by	players	that	present	
it	correctly.	

8.15.2 Transformation

The	method	is	applied	as	follows:	

1) The	four‐character‐code	of	the	sample	entry	is	replaced	by	a	new	sample	entry	code	‘resv’	
meaning	restricted	video.	

2) A	 Restricted	 Scheme	 Info	 box	 is	 added	 to	 the	 sample	 description,	 leaving	 all	 other	 boxes	
unmodified.	

3) The	 original	 sample	 entry	 type	 is	 stored	 within	 an	 Original	 Format	 box	 contained	 in	 the	
Restricted	Scheme	Info	box.	

A	RestrictedSchemeInfoBox	 is	 formatted	exactly	the	same	as	a	ProtectionSchemeInfoBox,	
except	that	is	uses	the	identifier	‘rinf’	instead	of	‘sinf’ (see below).	

The	original	sample	entry	type	is	contained	in	the	Original	Format	box	located	in	the	Restricted	Scheme	
Info	box	(in	an	identical	way	to	the	Protection	Scheme	Info	box	for	encrypted	media).	

The	 exact	 nature	 of	 the	 restriction	 is	 defined	 in	 the	SchemeTypeBox,	 and	 the	 data	 needed	 for	 that	
scheme	is	stored	in	the	SchemeInformationBox,	again,	analogously	to	protection	information.	

Note	that	restriction	and	protection	can	be	applied	at	the	same	time.	The	order	of	the	transformations	
follows	 from	 the	 four‐character	 code	 of	 the	 sample	 entry.	 For	 instance,	 if	 the	 sample	 entry	 type	 is	
‘resv’,	undoing	the	above	transformation	may	result	in	a	sample	entry	type	‘encv’,	indicating	that	
the	media	is	protected.	

Note	that	if	the	file	author	only	wants	to	provide	advisory	information	without	stopping	legacy	players	
from	playing	 the	 file,	 the	Restricted	Scheme	 Info	box	may	be	placed	 inside	 the	 sample	entry	without	
applying	the	four‐character‐code	transformation.	In	this	case	it	is	not	necessary	to	include	an	Original	
Format	box.	

ISO/IEC 14496-12:2015(E)

102	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.15.3 Restricted Scheme Information box

8.15.3.1 Definition

Box	Types:	 ‘rinf’	
Container:	 Restricted	Sample	Entry	or	Sample	Entry	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	Restricted	Scheme	Information	Box	contains	all	 the	 information	required	both	to	understand	 the	
restriction	scheme	applied	and	its	parameters.	It	also	documents	the	original	(un‐transformed)	sample	
entry	type	of	the	media.	The	Restricted	Scheme	Information	Box	is	a	container	Box.	It	is	mandatory	in	a	
sample	entry	that	uses	a	code	indicating	a	restricted	stream,	i.e.,	‘resv’.	

When	used	in	a	restricted	sample	entry,	this	box	must	contain	the	original	format	box	to	document	the	
original	 sample	 entry	 type	 and	 a	 Scheme	 type	 box.	 A	 Scheme	 Information	 box	 may	 be	 required	
depending	on	the	restriction	scheme.	

8.15.3.2 Syntax

aligned(8) class RestrictedSchemeInfoBox(fmt) extends Box('rinf') {
 OriginalFormatBox(fmt) original_format;
 SchemeTypeBox scheme_type_box;
 SchemeInformationBox info; // optional
}

8.15.4 Scheme for stereoscopic video arrangements

8.15.4.1 General

When	stereo‐coded	video	 frames	are	decoded,	 the	decoded	 frames	either	 contain	a	 representation	of	
two	spatially	packed	constituent	frames	that	form	a	stereo	pair	(frame	packing)	or	only	one	view	of	a	
stereo	 pair	 (left	 and	 right	 views	 in	 different	 tracks).	 Restrictions	 due	 to	 stereo‐coded	 video	 are	
contained	in	the	Stereo	Video	box.	

The	SchemeType	‘stvi’	(stereoscopic	video)	is	used.	

8.15.4.2 Stereo video box

8.15.4.2.1 Definition

Box	Type:	 `stvi’	
Container:	 Scheme	Information	box	(‘schi’)	
Mandatory:	 Yes	(when	the	SchemeType	is	‘stvi’)	
Quantity:	 One	

The	Stereo	Video	box	 is	used	 to	 indicate	 that	decoded	 frames	either	 contain	 a	 representation	of	 two	
spatially	packed	constituent	frames	that	form	a	stereo	pair	or	contain	one	of	two	views	of	a	stereo	pair.	
The	Stereo	Video	box	shall	be	present	when	the	SchemeType	is	‘stvi’.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 103

	

8.15.4.2.2 Syntax

aligned(8) class StereoVideoBox extends extends FullBox(‘stvi’, version = 0, 0)
{
 template unsigned int(30) reserved = 0;
 unsigned int(2) single_view_allowed;
 unsigned int(32) stereo_scheme;
 unsigned int(32) length;
 unsigned int(8)[length] stereo_indication_type;
 Box[] any_box; // optional
}

8.15.4.2.3 Semantics

single_view_allowed is	 an	 integer.	 A	 zero	 value	 indicates	 that	 the	 content	 may	 only	 be	
displayed	 on	 stereoscopic	 displays.	When	 (single_view_allowed	 &	 1)	 is	 equal	 to	 1,	 it	 is	
allowed	 to	 display	 the	 right	 view	 on	 a	 monoscopic	 single‐view	 display.	 When	
(single_view_allowed	 &	 2)	 is	 equal	 to	 2,	 it	 is	 allowed	 to	 display	 the	 left	 view	 on	 a	
monoscopic	single‐view	display.	

stereo_scheme is	an	integer	that	indicates	the	stereo	arrangement	scheme	used	and	the	stereo	
indication	type	according	to	 the	used	scheme.	The	 following	values	 for	stereo_scheme are	
specified:	
1:	 the	 frame	 packing	 scheme	 as	 specified	 by	 the	 Frame	 packing	 arrangement	 Supplemental	

Enhancement	Information	message	of	ISO/IEC	14496‐10	[ISO/IEC	14496‐10]	
2:	 the	arrangement	type	scheme	as	specified	in	Annex	L	of	ISO/IEC	13818‐2	[ISO/IEC	13818‐

2:2000/Amd.4]	
3:	 the	stereo	scheme	as	specified	in	ISO/IEC	23000‐11	for	both	frame/service	compatible	and	

2D/3D	mixed	services.	
Other	values	of	stereo_scheme	are	reserved.	

length indicates	the	number	of	bytes	for	the	stereo_indication_type	field.	
stereo_indication_type	 indicates	the	stereo	arrangement	type	according	to	the	used	stereo	

indication	scheme.	The	syntax	and	semantics	of	stereo_indication_type	depend	on	 the	
value	 of	 stereo_scheme.	 The	 syntax	 and	 semantics	 for	 stereo_indication_type for	
the	following	values	of	stereo_scheme	are	specified	as	follows:	
stereo_scheme	 equal	 to	 1:	 The	 value	 of	 length	 shall	 be	 4	 and	

stereo_indication_type	 shall	 be	 unsigned int(32)	 which	 contains	 the	
frame_packing_arrangement_type	 value	 from	 Table	 D‐8	 of	 ISO/IEC	14496‐10	 [ISO/IEC	
14496‐10]	(‘Definition	of	frame_packing_arrangement_type’).	

stereo_scheme	 equal	 to	 2:	 The	 value	 of	 length	 shall	 be	 4	 and	
stereo_indication_type	shall	be	unsigned int(32)	which	contains	the	type	value	
from	 Table	 L‐1	 of	 ISO/IEC	13818‐2	 [ISO/IEC	13818‐2:2000/Amd.4]	 (‘Definition	 of	
arrangement_type’).	

stereo_scheme	 equal	 to	 3:	 The	 value	 of	 length	 shall	 be	 2	 and	
stereo_indication_type	 shall	 contain	 two	 syntax	 elements	 of	unsigned int(8).	
The	 first	 syntax	 element	 shall	 contain	 the	 stereoscopic	 composition	 type	 from	 Table	4	 of	
ISO/IEC	23000‐11:2009.	The	least	significant	bit	of	the	second	syntax	element	shall	contain	
the	 value	 of	is_left_first	 as	 specified	 in	 8.4.3	 of	 ISO/IEC	23000‐11:2009,	 while	 the	
other	bits	are	reserved	and	shall	be	set	to	0.	

ISO/IEC 14496-12:2015(E)

104	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	following	applies	when	the	Stereo	Video	box	is	used:	

 In	the	Track	Header	box	

 width	and	height	specify	the	visual	presentation	size	of	a	single	view	after	unpacking.	

 In	the	Sample	Description	box	

 frame_count	 shall	 be	 1,	 because	 the	 decoder	 physically	 outputs	 a	 single	 frame.	 In	 other	
words,	the	constituent	frames	included	within	a	frame‐packed	picture	are	not	documented	by	
frame_count.	

 width	 and	height	document	 the	pixel	 counts	of	 a	 frame‐packed	picture	 (and	not	 the	pixel	
counts	of	a	single	view	within	a	frame‐packed	picture).	

 the	 Pixel	 Aspect	 Ratio	 box	 documents	 the	 pixel	 aspect	 ratio	 of	 each	 view	when	 the	 view	 is	
displayed	 on	 a	monoscopic	 single‐view	 display.	 For	 example,	 in	many	 spatial	 frame	 packing	
arrangements,	the	Pixel	Aspect	Ratio	box	therefore	indicates	2:1	or	1:2	pixel	aspect	ratio,	as	the	
spatial	resolution	of	one	view	of	 frame‐packed	video	 is	 typically	halved	along	one	coordinate	
axis	compared	to	that	of	the	single‐view	video	of	the	same	format.	

8.16 Segments

8.16.1 Introduction

Media	presentations	may	be	divided	into	segments	for	delivery,	for	example,	it	is	possible	(e.g.	in	HTTP	
streaming)	 to	 form	 files	 that	 contain	 a	 segment	 –	 or	 concatenated	 segments	 –	 which	 would	 not	
necessarily	form	ISO	base	media	file	format	compliant	files	(e.g.	they	do	not	contain	a	movie	box).	

This	Subclause	defines	specific	boxes	that	may	be	used	in	such	segments.	

8.16.2 Segment Type Box

Box	Type:	 `styp’	
Container:	 File	
Mandatory:	 No	
Quantity:	 Zero	or	more	

If	segments	are	stored	in	separate	files	(e.g.	on	a	standard	HTTP	server)	it	is	recommended	that	these	
‘segment	 files’	 contain	 a	 segment‐type	box,	which	must	 be	 first	 if	 present,	 to	 enable	 identification	 of	
those	files,	and	declaration	of	the	specifications	with	which	they	are	compliant.	

A	segment	type	has	the	same	format	as	an	'ftyp'	box	[4.3],	except	that	it	takes	the	box	type	'styp'.	
The	brands	within	it	may	include	the	same	brands	that	were	included	in	the	'ftyp'	box	that	preceded	
the	‘moov’	box,	and	may	also	include	additional	brands	to	indicate	the	compatibility	of	this	segment	
with	various	specification(s).	

Valid	segment	 type	boxes	shall	be	 the	 first	box	 in	a	segment.	Segment	 type	boxes	may	be	removed	 if	
segments	are	concatenated	(e.g.	to	form	a	full	file),	but	this	is	not	required.	Segment	type	boxes	that	are	
not	first	in	their	files	may	be	ignored.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 105

	

8.16.3 Segment Index Box

8.16.3.1 Definition

Box	Type:	 `sidx’	
Container:	 File	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	 Segment	 Index	 box	 ('sidx')	 provides	 a	 compact	 index	 of	 one	 media	 stream	 within	 the	 media	
segment	to	which	it	applies.	It	is	designed	so	that	it	can	be	used	not	only	with	media	formats	based	on	
this	 specification	 (i.e.	 segments	 containing	 sample	 tables	 or	movie	 fragments),	 but	 also	 other	media	
formats	 (for	 example,	 MPEG‐2	 Transport	 Streams	 [ISO/IEC	13818‐1]).	 For	 this	 reason,	 the	 formal	
description	 of	 the	 box	 given	 here	 is	 deliberately	 generic,	 and	 then	 at	 the	 end	 of	 this	 Subclause	 the	
specific	definitions	for	segments	using	movie	fragments	are	given.	

Each	 Segment	 Index	 box	 documents	 how	 a	 (sub)segment	 is	 divided	 into	 one	 or	 more	 subsegments	
(which	may	themselves	be	further	subdivided	using	Segment	Index	boxes).	

A	subsegment	is	defined	as	a	time	interval	of	the	containing	(sub)segment,	and	corresponds	to	a	single	
range	 of	 bytes	 of	 the	 containing	 (sub)segment.	 The	 durations	 of	 all	 the	 subsegments	 sum	 to	 the	
duration	of	the	containing	(sub)segment.	

Each	 entry	 in	 the	 Segment	 Index	 box	 contains	 a	 reference	 type	 that	 indicates	whether	 the	 reference	
points	 directly	 to	 the	media	 bytes	 of	 a	 referenced	 leaf	 subsegment,	 or	 to	 a	 Segment	 Index	 box	 that	
describes	 how	 the	 referenced	 subsegment	 is	 further	 subdivided;	 as	 a	 result,	 the	 segment	 may	 be	
indexed	 in	 a	 ‘hierarchical’	 or	 ‘daisy‐chain’	 or	 other	 form	 by	 documenting	 time	 and	 byte	 offset	
information	for	other	Segment	Index	boxes	applying	to	portions	of	the	same	(sub)segment.	

Each	Segment	Index	box	provides	information	about	a	single	media	stream	of	the	Segment,	referred	to	
as	the	reference	stream.	If	provided,	the	first	Segment	Index	box	in	a	segment, for	a	given	media	stream,	
shall	document	the	entirety	of	that	media	stream	in	the	segment,	and	shall	precede	any	other	Segment	
Index	box	in	the	segment	for	the	same	media	stream.	

If	a	segment	index	is	present	for	at	 least	one	media	stream	but	not	all	media	streams	in	the	segment,	
then	normally	a	media	stream	in	which	not	every	access	unit	is	independently	coded,	such	as	video,	is	
selected	to	be	indexed.	For	any	media	stream	for	which	no	segment	index	is	present,	referred	to	as	non‐
indexed	stream,	the	media	stream	associated	with	the	first	Segment	Index	box	in	the	segment	serves	as	
a	reference	stream	in	a	sense	that	it	also	describes	the	subsegments	for	any	non‐indexed	media	stream.	

NOTE	1	Further	restrictions	may	be	specified	in	derived	specifications.	

Segment	Index	boxes	may	be	inline	in	the	same	file	as	the	indexed	media	or,	in	some	cases,	in	a	separate	
file	containing	only	indexing	information.	

A	 Segment	 Index	 box	 contains	 a	 sequence	 of	 references	 to	 subsegments	 of	 the	 (sub)segment	
documented	by	the	box.	The	referenced	subsegments	are	contiguous	in	presentation	time.	Similarly,	the	
bytes	referred	to	by	a	Segment	Index	box	are	always	contiguous	in	both	the	media	file,	and	the	separate	

ISO/IEC 14496-12:2015(E)

106	 ©	ISO/IEC	2015	–	All	rights	reserved

	

index	segment,	or	in	the	single	file	if	indexes	are	placed	within	the	media	file.	The	referenced	size	gives	
the	count	of	the	number	of	bytes	in	the	material	referenced.	

NOTE	2	A	media	segment	may	be	indexed	by	more	than	one	“top‐level”	Segment	Index	box	that	are	 independent	of	
each	 other,	 each	 of	which	 indexes	 one	media	 stream	within	 the	media	 segment.	 In	 segments	 containing	multiple	
media	streams	the	referenced	bytes	may	contain	media	from	multiple	streams,	even	though	the	Segment	Index	box	
provides	timing	information	for	only	one	media	stream.	

In	the	file	containing	the	Segment	Index	box,	the	anchor	point	for	a	Segment	Index	box	is	the	first	byte	
after	that	box.	If	there	are	two	files,	the	anchor	point	in	the	media	file	is	the	beginning	of	the	top‐level	
segment	(i.e.	the	beginning	of	the	segment	file	if	each	segment	is	stored	in	a	separate	file).	The	material	
in	the	file	containing	media	(which	may	also	be	the	file	that	contains	the	segment	index	boxes)	starts	at	
the	indicated	offset	from	the	anchor	point.	If	there	are	two	files,	the	material	in	the	index	file	starts	at	
the	anchor	point,	i.e.	immediately	following	the	Segment	Index	box.	

Within	the	two	constraints	(a)	that,	in	time,	the	subsegments	are	contiguous,	that	is,	each	entry	in	the	
loop	 is	 consecutive	 from	 the	 immediately	 preceding	 one	 and	 (b)	 within	 a	 given	 file	 (integrated	 file,	
media	file,	or	 index	side	file)	the	referenced	bytes	are	contiguous,	there	are	a	number	of	possibilities,	
including:	

1) a	 reference	 to	 a	 segment	 index	 box	 may	 include,	 in	 its	 byte	 count,	 immediately	 following	
Segment	Index	boxes	that	document	subsegments;	

2) in	an	 integrated	 file,	using	 the	first_offset	 field,	 it	 is	possible	 to	separate	Segment	 Index	
boxes	from	the	media	that	they	refer	to;	

3) in	an	 integrated	file,	 it	 is	possible	to	 locate	Segment	Index	boxes	 for	subsegments	close	to	the	
media	they	index;	

4) when	a	separate	file	containing	Segment	Indexes	is	used,	it	is	possible	for	the	loop	entries	to	be	
of	‘mixed	type’,	some	to	Segment	Index	boxes	in	the	index	segment,	some	to	media	subsegments	
in	the	media	file.	

NOTE	3	Profiles	may	be	used	to	restrict	the	placement	of	segment	indexes,	or	the	overall	complexity	of	the	indexing.	

The	Segment	Index	box	documents	the	presence	of	Stream	Access	Points	(SAPs),	as	specified	in	Annex	I,	
in	the	referenced	subsegments.	The	annex	specifies	characteristics	of	SAPs,	such	as	ISAU,	ISAP	and	TSAP,	as	
well	as	SAP	types,	which	are	all	used	in	the	semantics	below.	A	subsegment	starts	with	a	SAP	when	the	
subsegment	contains	a	SAP,	and	for	the	first	SAP,	ISAU	is	the	index	of	the	first	access	unit	that	follows	ISAP,	
and	ISAP	is	contained	in	the	subsegment.	

For	segments	based	on	this	specification	(i.e.	based	on	movie	sample	tables	or	movie	fragments):	

 an	access	unit	is	a	sample;	
 a	 subsegment	 is	 a	 self‐contained	 set	 of	 one	 or	 more	 consecutive	 movie	 fragments;	 a	 self‐

contained	set	contains	one	or	more	Movie	Fragment	boxes	with	the	corresponding	Media	Data	
box(es),	and	a	Media	Data	Box	containing	data	referenced	by	a	Movie	Fragment	Box	must	follow	
that	 Movie	 Fragment	 box	 and	 precede	 the	 next	 Movie	 Fragment	 box	 containing	 information	
about	the	same	track;	

 Segment	Index	boxes	shall	be	placed	before	subsegment	material	they	document,	that	is,	before	
any	Movie	Fragment	(‘moof’)	box	of	the	documented	material	of	the	subsegment;	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 107

	

 streams	are	tracks	in	the	file	format,	and	stream	IDs	are	track	IDs;	
 a	subsegment	contains	a	stream	access	point	if	a	track	fragment	within	the	subsegment	for	the	

track	with	track_ID	equal	to	reference_ID	contains	a	stream	access	point;	
 initialisation	data	for	SAPs	consists	of	the	movie	box;	
 presentation	 times	 are	 in	 the	 movie	 timeline,	 that	 is	 they	 are	 composition	 times	 after	 the	

application	of	any	edit	list	for	the	track;	
 the	ISAP	is	a	position	exactly	pointing	to	the	start	of	a	top‐level	box,	such	as	a	movie	fragment	box	

'moof';	
 a	SAP	of	type	1	or	type	2	is	indicated	as	a	sync	sample,	or	by	sample_is_non_sync_sample	

equal	to	0	in	the	movie	fragment;	
 a	SAP	of	type	3	is	marked	as	a	member	of	a	sample	group	of	type	‘rap ‘;	
 a	SAP	of	type	4	is	marked	as	a	member	of	a	sample	group	of	type	‘roll‘	where	the	value	of	the	

roll_distance	field	is	greater	than	0.	

NOTE	4	For	SAPs	of	type	5	and	6,	no	specific	signalling	in	the	ISO	base	media	file	format	is	supported.	

8.16.3.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {
 unsigned int(32) reference_ID;
 unsigned int(32) timescale;
 if (version==0) {
 unsigned int(32) earliest_presentation_time;
 unsigned int(32) first_offset;
 }
 else {
 unsigned int(64) earliest_presentation_time;
 unsigned int(64) first_offset;
 }
 unsigned int(16) reserved = 0;
 unsigned int(16) reference_count;
 for(i=1; i <= reference_count; i++)
 {
 bit (1) reference_type;
 unsigned int(31) referenced_size;
 unsigned int(32) subsegment_duration;
 bit(1) starts_with_SAP;
 unsigned int(3) SAP_type;
 unsigned int(28) SAP_delta_time;
 }
}

8.16.3.3 Semantics

reference_ID	 provides	 the	 stream	 ID	 for	 the	 reference	 stream;	 if	 this	 Segment	 Index	 box	 is	
referenced	from	a	“parent”	Segment	Index	box,	the	value	of	reference_ID	shall	be	the	same	
as	the	value	of	reference_ID	of	the	“parent”	Segment	Index	box;	

timescale provides	the	timescale,	in	ticks	per	second,	for	the	time	and	duration	fields	within	this	
box;	it	is	recommended	that	this	match	the	timescale	of	the	reference	stream	or	track;	for	files	
based	on	this	specification,	that	is	the	timescale	field	of	the	Media	Header	Box	of	the	track;	

earliest_presentation_time	is	the	earliest	presentation	time	of	any	content	in	the	reference	
stream	 in	 the	 first	 subsegment,	 in	 the	 timescale	 indicated	 in	 the	 timescale	 field;	 the	 earliest	
presentation	 time	 is	derived	 from	media	 in	access	units,	or	parts	of	 access	units,	 that	are	not	
omitted	by	an	edit	list	(if	any);	

first_offset	is	the	distance	in	bytes,	in	the	file	containing	media,	from	the	anchor	point,	to	the	
first	byte	of	the	indexed	material;	

ISO/IEC 14496-12:2015(E)

108	 ©	ISO/IEC	2015	–	All	rights	reserved

	

reference_count	provides	the	number	of	referenced	items;	
reference_type:	when	set	to	1	indicates	that	the	reference	is	to	a	segment	index	(‘sidx’)	box;	

otherwise	the	reference	is	to	media	content	(e.g.,	in	the	case	of	files	based	on	this	specification,	
to	a	movie	fragment	box);	if	a	separate	index	segment	is	used,	then	entries	with	reference	type	1	
are	in	the	index	segment,	and	entries	with	reference	type	0	are	in	the	media	file;	

referenced_size:	the	distance	in	bytes	from	the	first	byte	of	the	referenced	item	to	the	first	byte	
of	the	next	referenced	item,	or	in	the	case	of	the	last	entry,	the	end	of	the	referenced	material;	

subsegment_duration:	when	the	reference	is	to	Segment	Index	box,	this	field	carries	the	sum	of	
the	subsegment_duration	 fields	 in	 that	 box;	when	 the	 reference	 is	 to	 a	 subsegment,	 this	
field	 carries	 the	 difference	 between	 the	 earliest	 presentation	 time	 of	 any	 access	 unit	 of	 the	
reference	stream	in	the	next	subsegment	(or	the	first	subsegment	of	the	next	segment,	if	this	is	
the	last	subsegment	of	the	segment,	or	the	end	presentation	time	of	the	reference	stream	if	this	
is	the	last	subsegment	of	the	stream)	and	the	earliest	presentation	time	of	any	access	unit	of	the	
reference	 stream	 in	 the	 referenced	 subsegment;	 the	 duration	 is	 in	 the	 same	 units	 as	
earliest_presentation_time;	

starts_with_SAP	 indicates	 whether	 the	 referenced	 subsegments	 start	 with	 a	 SAP.	 For	 the	
detailed	semantics	of	this	field	in	combination	with	other	fields,	see	the	table	below.	

SAP_type	 indicates	 a	 SAP	 type	 as	 specified	 in	 Annex	I,	 or	 the	 value	 0.	 Other	 type	 values	 are	
reserved.	For	the	detailed	semantics	of	this	field	in	combination	with	other	fields,	see	the	table	
below.	

SAP_delta_time:	indicates	TSAP	of	the	first	SAP,	in	decoding	order,	in	the	referenced	subsegment	
for	 the	 reference	 stream.	 If	 the	 referenced	 subsegments	 do	 not	 contain	 a	 SAP,	
SAP_delta_time	is	reserved	with	the	value	0;	otherwise	SAP_delta_time	is	the	difference	
between	the	earliest	presentation	time	of	the	subsegment,	and	the	TSAP	(note	that	this	difference	
may	be	zero,	in	the	case	that	the	subsegment	starts	with	a	SAP).	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 109

	

Table 4 — Semantics of SAP and reference type combinations

starts_with_SAP SAP_type reference_type Meaning	

0	 0	 0	or	1	 No	information	of	SAPs	is	provided.	

0	 1	to	6,	
inclusive	

0	(media)	 The	subsegment	contains	(but	may	
not	start	with)	a	SAP	of	the	given	
SAP_type	and	the	first	SAP	of	the	
given	SAP_type	corresponds	to	
SAP_delta_time.	

0	 1	to	6,	
inclusive	

1	(index)	 All	the	referenced	subsegments	
contain	a	SAP	of	at	most	the	given	
SAP_type	and	none	of	these	SAPs	
is	of	an	unknown	type.	

1	 0	 0	(media)	 The	subsegment	starts	with	a	SAP	of	
an	unknown	type.	

1	 0	 1	(index)	 All	the	referenced	subsegments	start	
with	a	SAP	which	may	be	of	an	
unknown	type	

1	 1	to	6,	
inclusive	

0	(media)	 The	referenced	subsegment	starts	
with	a	SAP	of	the	given	SAP_type.	

1	 1	to	6,	
inclusive	

1	(index)	 All	the	referenced	subsegments	start	
with	a	SAP	of	at	most	the	given	
SAP_type	and	none	of	these	SAPs	
is	of	an	unknown	type.	

	

8.16.4 Subsegment Index Box

8.16.4.1 Definition

Box	Type:	 `ssix’	
Container:	 File	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	 Subsegment	 Index	 box	 ('ssix')	 provides	 a	 mapping	 from	 levels	 (as	 specified	 by	 the	 Level	
Assignment	box)	to	byte	ranges	of	the	indexed	subsegment.	In	other	words,	this	box	provides	a	compact	
index	 for	 how	 the	 data	 in	 a	 subsegment	 is	 ordered	 according	 to	 levels	 into	 partial	 subsegments.	 It	
enables	 a	 client	 to	 easily	 access	 data	 for	 partial	 subsegments	 by	 downloading	 ranges	 of	 data	 in	 the	
subsegment.	

Each	byte	in	the	subsegment	shall	be	explicitly	assigned	to	a	level,	and	hence	the	range	count	must	be	2	
or	greater.	 If	 the	range	 is	not	associated	with	any	 information	 in	 the	 level	assignment,	 then	any	 level	
that	is	not	included	in	the	level	assignment	may	be	used.	

ISO/IEC 14496-12:2015(E)

110	 ©	ISO/IEC	2015	–	All	rights	reserved

	

There	 shall	 be	 0	 or	 1	 Subsegment	 Index	 boxes	 per	 each	 Segment	 Index	 box	 that	 indexes	 only	 leaf	
subsegments,	 i.e.	 that	only	 indexes	 subsegments	but	no	segment	 indexes.	A	Subsegment	 Index	box,	 if	
any,	shall	be	the	next	box	after	the	associated	Segment	Index	box.	A	Subsegment	Index	box	documents	
the	subsegments	that	are	indicated	in	the	immediately	preceding	Segment	Index	box.	

In	general,	the	media	data	constructed	from	the	byte	ranges	is	incomplete,	i.e.	it	does	not	conform	to	the	
media	format	of	the	entire	subsegment.	

For	 leaf	 subsegments	 based	 on	 this	 specification	 (i.e.	 based	 on	 movie	 sample	 tables	 and	 movie	
fragments):	

 Each	level	shall	be	assigned	to	exactly	one	partial	subsegment,	i.e.	byte	ranges	for	one	level	shall	
be	contiguous.	

 Levels	of	partial	subsegments	shall	be	assigned	by	increasing	numbers	within	a	subsegment,	i.e.,	
samples	of	a	partial	subsegment	may	depend	on	any	samples	of	preceding	partial	subsegments	
in	the	same	subsegment,	but	not	the	other	way	around.	For	example,	each	partial	subsegment	
contains	 samples	 having	 an	 identical	 temporal	 level	 and	 partial	 subsegments	 appear	 in	
increasing	temporal	level	order	within	the	subsegment.	

 When	a	partial	subsegment	is	accessed	in	this	way,	 for	any	assignment_type	other	than	3,	
the	 final	 Media	 Data	 box	 may	 be	 incomplete,	 that	 is,	 less	 data	 is	 accessed	 than	 the	 length	
indication	 of	 the	Media	Data	Box	 indicates	 is	 present.	 The	 length	 of	 the	Media	Data	 box	may	
need	 adjusting,	 or	 padding	used.	 The	padding_flag	 in	 the	 Level	Assignment	Box	 indicates	
whether	this	missing	data	can	be	replaced	by	zeros.	If	not,	the	sample	data	for	samples	assigned	
to	levels	that	are	not	accessed	is	not	present,	and	care	should	be	taken	not	to	attempt	to	process	
such	samples.	

 The	data	ranges	corresponding	to	partial	subsegments	include	both	Movie	Fragment	boxes	and	
Media	Data	boxes.	The	first	partial	subsegment,	i.e.	the	lowest	level,	will	correspond	to	a	Movie	
Fragment	 box	 as	 well	 as	 (parts	 of)	 Media	 Data	 box(es),	 whereas	 subsequent	 partial	
subsegments	(higher	levels)	may	correspond	to	(parts	of)	Media	Data	box(es)	only.	

NOTE	 assignment_type	 equal	 to	 0	 (specified	 in	 the	 subsegment	 index	 box	 ‘leva’)	 can	 be	 used,	 for	 example,	
together	with	the	temporal	level	sample	grouping	(‘tele’)	when	frames	of	a	video	bitstream	are	temporally	ordered	
within	subsegments;	assignment_type equal	to	2	can	be	used,	for	example,	when	each	view	of	a	multiview	video	
bitstream	is	contained	in	a	separate	track	and	the	track	fragments	for	all	the	views	are	contained	in	a	single	movie	
fragment.	 assignment_type	 equal	 to	 3	 may	 be	 used,	 for	 example,	 when	 audio	 and	 video	 movie	 fragments	
(including	 the	 respective	Media	 Data	 boxes)	 are	 interleaved.	 The	 first	 level	 can	 be	 specified	 to	 contain	 the	 audio	
movie	fragments	(including	the	respective	Media	Data	boxes),	whereas	the	second	level	can	be	specified	to	contain	
both	audio	and	video	movie	fragments	(including	all	Media	Data	boxes).	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 111

	

8.16.4.2 Syntax

aligned(8) class SubsegmentIndexBox extends FullBox(‘ssix’, 0, 0) {
 unsigned int(32) subsegment_count;
 for(i=1; i <= subsegment_count; i++)
 {
 unsigned int(32) range_count;
 for (j=1; j <= range_count; j++) {
 unsigned int(8) level;
 unsigned int(24) range_size;
 }
 }
}

8.16.4.3 Semantics

subsegment_count	is	a	positive	integer	specifying	the	number	of	subsegments	for	which	partial	
subsegment	 information	 is	 specified	 in	 this	 box.	 subsegment_count	 shall	 be	 equal	 to	
reference_count	 (i.e.,	 the	 number	 of	 movie	 fragment	 references)	 in	 the	 immediately	
preceding	Segment	Index	box.	

range_count	 specifies	 the	 number	 of	 partial	 subsegment	 levels	 into	 which	 the	 media	 data	 is	
grouped.	This	value	shall	be	greater	than	or	equal	to	2.	

range_size	indicates	the	size	of	the	partial	subsegment.	
level	specifies	the	level	to	which	this	partial	subsegment	is	assigned.	

8.16.5 Producer Reference Time Box

8.16.5.1 Definition

Box	Type:	 `prft’	
Container:	 File	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	producer	reference	time	box	supplies	relative	wall‐clock	times	at	which	movie	fragments,	or	files	
containing	movie	 fragments	 (such	 as	 segments)	were	produced.	When	 these	 files	 are	 both	produced	
and	 consumed	 in	 real	 time,	 this	 can	 provide	 clients	 with	 information	 to	 enable	 consumption	 and	
production	to	proceed	at	equivalent	rates,	thus	avoiding	possible	buffer	overflow	or	underflow.	

This	box	is	related	to	the	next	movie	fragment	box	that	follows	it	in	bitstream	order.	It	must	follow	any	
segment	 type	 or	 segment	 index	 box	 (if	 any)	 in	 the	 segment,	 and	 occur	 before	 the	 following	 movie	
fragment	box	(to	which	it	refers).	If	a	segment	file	contains	any	producer	reference	time	boxes,	then	the	
first	of	them	shall	occur	before	the	first	movie	fragment	box	in	that	segment.	

The	 box	 contains	 a	 time	 value	 measured	 on	 a	 clock	 which	 increments	 at	 the	 same	 rate	 as	 a	 UTC‐
synchronized	NTP	[RFC	5905]	clock,	using	NTP	format.	This	is	associated	with	a	media	time	for	one	of	
the	tracks	in	the	movie	fragment.	That	media	time	should	be	in	the	range	of	times	in	that	track	in	the	
associated	movie	fragment.	

Producer	reference	times	should	be	associated	with	at	most	one	track.	

ISO/IEC 14496-12:2015(E)

112	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.16.5.2 Syntax

aligned(8) class ProducerReferenceTimeBox extends FullBox(‘prft’, version, 0) {
 unsigned int(32) reference_track_ID;
 unsigned int(64) ntp_timestamp;
 if (version==0) {
 unsigned int(32) media_time;
 } else {
 unsigned int(64) media_time;
 }
}

8.16.5.3 Semantics

reference_track_ID	provides	the	track_ID	for	the	reference	track.	
ntp_timestamp	indicates	a	UTC	time	in	NTP	format	corresponding	to	decoding_time.	
media_time	corresponds	to	the	same	time	as	ntp_timestamp,	but	in	the	time	units	used	for	the	

reference	track,	and	is	measured	on	this	media	clock	as	the	media	is	produced.	

NOTE		 in	most	cases	this	timestamp	will	not	be	equal	to	the	timestamp	of	the	first	sample	of	the	adjacent	segment	of	
the	reference	track,	but	it	is	recommended	it	be	in	the	range	of	the	segment	containing	this	producer	reference	time	
box.	

8.17 Support for Incomplete Tracks

8.17.1 General

This	Subclause	documents	the	sample	entry	formats	for	tracks	that	are	incomplete.	Incomplete	tracks	
may	contain	samples	that	are	marked	empty	or	not	received	using	the	sample	format.	

Incomplete	tracks	may	result,	for	example,	when	subsegments	are	received	partially	according	to	level	
assignments	and	padding_flag	in	the	Level	Assignment	box	indicates	that	the	data	in	a	Media	Data	
box	that	is	not	received	can	be	replaced	by	zeros.	Consequently,	sample	data	assigned	to	non‐accessed	
levels	 is	 not	 present,	 and	 care	 should	 be	 taken	 not	 to	 attempt	 to	 process	 such	 samples.	However,	 in	
partially	received	subsegments	some	tracks	might	remain	complete	in	content	while	other	tracks	might	
be	incomplete	and	only	contain	data	that	is	included	by	reference	into	the	complete	tracks.	

This	 Subclause	 specifies	 support	 for	 sample	 entry	 formats	 for	 incomplete	 tracks.	With	 this	 support,	
readers	can	detect	incomplete	tracks	from	their	sample	entries	and	avoid	processing	such	tracks	or	take	
the	possibility	of	empty	or	not	received	samples	into	account	when	processing	such	tracks.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 113

	

The	 support	 for	 incomplete	 tracks	 is	 similar	 to	 the	 content	 protection	 transformation	where	 sample	
entries	are	hidden	behind	generic	sample	entries,	such	as	‘encv’	and	‘enca’.	Because	the	format	of	a	
sample	 entry	 varies	 with	 media‐type,	 a	 different	 encapsulating	 four‐character‐code	 is	 used	 for	
incomplete	tracks	of	each	media	type	(audio,	video,	text	etc.).	They	are:	

Stream (Track) Type Sample-Entry Code

Video	 icpv	

Audio	 icpa	

Text	 icpt	

System	 icps	

Hint	 icph

Timed	Metadata	 icpm

	

Sample	data	of	incomplete	tracks	may	be	included	into	samples	of	other	tracks	by	reference,	and	hence	
an	incomplete	track	should	not	be	removed	as	long	as	any	track	reference	points	to	it.	

NOTE	–	The	choice	of	level	by	the	original	recording	client	may	vary	over	time,	and	at	times	represent	the	
complete	 track.	The	 level	 is	not	 indicated	here,	 and	 it	 is	not	 required	 that	 the	 sample	entry	 change	 from	
‘incomplete’	 to	 ‘complete’	when	all	 levels	were,	 in	 fact,	 received,	 for	a	period.	Note	also	 that	 the	 ‘original	
format’	 may	 have	 indicated	 encryption,	 if	 partial	 reception	 and	 decryption	 works	 for	 that	 encryption	
format.	

8.17.2 Transformation

The	sample	entry	for	a	track	that	becomes	incomplete	e.g.	through	partial	reception,	should	be	modified	
as	follows:	

1) The	four‐character‐code	of	the	sample	entry,	e.g.	‘avc1’,	is	replaced	by	a	new	sample	
entry	code	‘icpv’	meaning	an	incomplete	track.	

2) A	Complete	Track	Information	box	is	added	to	the	sample	description,	leaving	all	other	
boxes	unmodified.	

3) The	 original	 sample	 entry	 type,	 e.g.	‘avc1’,	 is	 stored	within	 an	Original	 Format	 box	
contained	in	the	Complete	Track	Information	box.	

After	transformation,	an	example	AVC	sample	entry	might	look	like:	

class IncompleteAVCSampleEntry() extends VisualSampleEntry (‘icpv’){
 CompleteTrackInfoBox();
 AVCConfigurationBox config;
 MPEG4BitRateBox (); // optional
 MPEG4ExtensionDescriptorsBox (); // optional
}

ISO/IEC 14496-12:2015(E)

114	 ©	ISO/IEC	2015	–	All	rights	reserved

	

8.17.3 Complete Track Information Box

8.17.3.1 Definition

Box	Types:	 ‘cinf’	
Container:	 Sample	Entry	for	an	Incomplete	Track	
Mandatory:	 Yes	
Quantity:	 Exactly	one	

The	Complete	Track	Information	Box	contains,	within	the	Original	Format	Box,	the	sample	entry	format	
of	 the	 complete	 track	 that	was	 transformed	 to	 the	present	 incomplete	 track.	 It	may	 contain	optional	
boxes	for	example	including	information	required	to	process	samples	of	the	present	incomplete	track.	
The	Complete	Track	Information	Box	is	a	container	box.	It	is	mandatory	in	a	sample	entry	that	uses	a	
code	indicating	an	incomplete	track.	

8.17.3.2 Syntax

aligned(8) class CompleteTrackInfoBox(fmt) extends Box('cinf') {
 OriginalFormatBox(fmt) original_format;
}

9 Hint Track Formats

9.1 RTP and SRTP Hint Track Format

9.1.1 Introduction

RTP	 is	 the	 real‐time	 transport	 protocol	 defined	 by	 the	 IETF	 (RFC	 3550	 and	 3551)	 and	 is	 currently	
defined	to	be	able	to	carry	a	limited	set	of	media	types	(principally	audio	and	video)	and	codings.	The	
packing	of	MPEG‐4	elementary	streams	into	RTP	is	under	discussion	in	both	bodies.	However,	it	is	clear	
that	the	way	the	media	is	packetized	does	not	differ	in	kind	from	the	existing	techniques	used	for	other	
codecs	in	RTP,	and	supported	by	this	scheme.	

In	standard	RTP,	each	media	stream	is	sent	as	a	separate	RTP	stream;	multiplexing	is	achieved	by	using	
IP’s	 port‐level	 multiplexing,	 not	 by	 interleaving	 the	 data	 from	 multiple	 streams	 into	 a	 single	 RTP	
session.	However,	if	MPEG	is	used,	it	may	be	necessary	to	multiplex	several	media	tracks	into	one	RTP	
track	(e.g.	when	using	MPEG‐2	transport	in	RTP,	or	FlexMux).	Each	hint	track	is	therefore	tied	to	a	set	of	
media	 tracks	 by	 track	 references.	 The	 hint	 tracks	 extract	 data	 from	 their	 media	 tracks	 by	 indexing	
through	this	table.	Hint	track	references	to	media	tracks	have	the	reference	type	‘hint’.	

This	 design	 decides	 the	 packet	 size	 at	 the	 time	 the	 server	 hint	 track	 is	 created;	 therefore,	 in	 the	
declarations	 for	 the	hint	 track,	we	 indicate	 the	 chosen	packet	 size.	 This	 is	 in	 the	 sample‐description.	
Note	that	it	is	valid	for	there	to	be	several	RTP	hint	tracks	for	each	media	track,	with	different	packet	
size	 choices.	 Similarly	 the	 time‐scale	 for	 the	 RTP	 clock	 is	 provided.	 The	 timescale	 of	 the	 server	 hint	
track	is	usually	chosen	to	match	the	timescale	of	the	media	tracks,	or	a	suitable	value	is	picked	for	the	
server.	 In	 some	cases,	 the	RTP	 timescale	 is	different	 (e.g.	 90	kHz	 for	 some	MPEG	payloads),	 and	 this	
permits	 that	variation.	Session	description	(SAP/SDP)	 information	 is	stored	 in	user‐data	boxes	 in	 the	
track.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 115

	

RTP	hint	tracks	do	not	use	the	composition	time	offset	table	(‘ctts’).	Instead,	the	hinting	process	for	
server	 hint	 tracks	 establishes	 the	 correct	 transmission	 order	 and	 time‐stamps,	 perhaps	 using	 the	
transmission	time	offset	to	set	transmission	times.	

Hinted	 content	may	 require	 the	 use	 of	 SRTP	 for	 streaming	 by	 using	 the	 hint	 track	 format	 for	 SRTP,	
defined	here.	SRTP	hint	tracks	are	formatted	identically	to	RTP	hint	tracks,	except	that:	

1) the	sample	entry	name	is	changed	from	‘rtp ‘	to	‘srtp’	to	indicate	to	the	server	that	SRTP	
is	required;	

2) an	extra	box	is	added	to	the	sample	entry	which	can	be	used	to	instruct	the	server	in	the	nature	
of	the	on‐the‐fly	encryption	and	integrity	protection	that	must	be	applied.	

9.1.2 Sample Description Format

RTP	 server	 hint	 tracks	 are	 hint	 tracks	 (media	 handler	‘hint’),	with	 an	 entry‐format	 in	 the	 sample	
description	of	‘rtp ‘:	

class RtpHintSampleEntry() extends SampleEntry (‘rtp ‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

The	 hinttrackversion	 is	 currently	 1;	 the	 highest	 compatible	 version	 field	 specifies	 the	 oldest	
version	with	which	this	track	is	backward‐compatible.	

The	maxpacketsize	indicates	the	size	of	the	largest	packet	that	this	track	will	generate.	

The	additional	data	is	a	set	of	boxes,	from	the	following.	

class timescaleentry() extends Box(‘tims’) {
 uint(32) timescale;
}

class timeoffset() extends Box(‘tsro’) {
 int(32) offset;
}

class sequenceoffset extends Box(‘snro’) {
 int(32) offset;
}

The	 timescale	 entry	 is	 required.	 The	 other	 two	 are	 optional.	 The	 offsets	 over‐ride	 the	 default	 server	
behaviour,	which	is	to	choose	a	random	offset.	A	value	of	0,	therefore,	will	cause	the	server	to	apply	no	
offset	to	the	timestamp	or	sequence	number	respectively.	

An	SRTP	Hint	Sample	entry	is	used	when	it	is	required	that	SRTP	processing	is	required.	

class SrtpHintSampleEntry() extends SampleEntry (‘srtp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

ISO/IEC 14496-12:2015(E)

116	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Fields	and	boxes	are	defined	as	for	the	RtpHintSampleEntry	(‘rtp ‘)	of	the	ISO	Base	Media	File	
Format.	However,	an	SRTP	Process	Box	shall	be	included	in	an	SrtpHintSampleEntry	as	one	of	the	
additionaldata	boxes.	

9.1.2.1 SRTP Process box ‘srpp‘:

Box	Type:	 ‘srpp’	
Container:	 SrtpHintSampleEntry	
Mandatory:	Yes	
Quantity:	 Exactly	one	

The	SRTP	Process	Box	may	instruct	the	server	as	to	which	SRTP	algorithms	should	be	applied.	

aligned(8) class SRTPProcessBox extends FullBox(‘srpp’, version, 0) {
 unsigned int(32) encryption_algorithm_rtp;
 unsigned int(32) encryption_algorithm_rtcp;
 unsigned int(32) integrity_algorithm_rtp;
 unsigned int(32) integrity_algorithm_rtcp;
 SchemeTypeBox scheme_type_box;
 SchemeInformationBox info;
}

The	Scheme	Type	Box	and	Scheme	Information	Box	have	the	syntax	defined	above	for	protected	media	
tracks.	They	serve	to	provide	the	parameters	required	for	applying	SRTP.	The	Scheme	Type	Box	is	used	
to	 indicate	 the	 necessary	 key‐management	 and	 security	 policy	 for	 the	 stream	 in	 extension	 to	 the	
defined	 algorithmic	 pointers	 provided	 by	 the	 SRTPProcessBox.	 The	 key‐management	 functionality	 is	
also	 used	 to	 establish	 all	 the	 necessary	 SRTP	 parameters	 as	 listed	 in	 section	 8.2	 of	 the	 SRTP	
specification.	The	exact	definition	of	protection	schemes	is	out	of	the	scope	of	the	file	format.	

The	 algorithms	 for	 encryption	 and	 integrity	 protection	 are	 defined	 by	 SRTP.	 The	 following	 format	
identifiers	are	defined	here.	An	entry	of	four	spaces	($20$20$20$20)	may	be	used	to	indicate	that	the	
choice	of	algorithm	for	either	encryption	or	integrity	protection	is	decided	by	a	process	outside	the	file	
format.	

Format	 Algorithm	

$20$20$20$20	 The	choice	of	algorithm	for	either	encryption	or	integrity	protection	is	
decided	by	a	process	outside	the	file	format	

ACM1 	 Encryption	using	AES	in	Counter	Mode	with	128‐bit	key,	as	defined	in	
Section	4.1.1	of	the	SRTP	specification.	

AF81	 Encryption	 using	 AES	 in	 F8‐mode	 with	 128‐bit	 key,	 as	 defined	 in	
Section	4.1.2	of	the	SRTP	specification.	

ENUL	 Encryption	using	the	NULL‐algorithm	as	defined	in	Section	4.1.3	of	the	
SRTP	specification	

SHM2	 Integrity	protection	using	HMAC‐SHA‐1	with	160‐bit	key,	as	defined	in	
Section	4.2.1	of	the	SRTP	specification.	

ANUL	 Integrity	 protection	 not	 applied	 to	 RTP	 (but	 still	 applied	 to	 RTCP).	
Note:	this	is	valid	only	for	integrity_algorithm_rtp	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 117

	

9.1.3 Sample Format

Each	sample	in	a	server	hint	track	will	generate	one	or	more	RTP	packets,	whose	RTP	timestamp	is	the	
same	as	the	hint	sample	time.	Therefore,	all	the	packets	made	by	one	sample	have	the	same	timestamp.	
However,	 provision	 is	made	 to	 ask	 the	 server	 to	 ‘warp’	 the	 actual	 transmission	 times,	 for	 data‐rate	
smoothing,	for	example.	

Each	sample	contains	 two	areas:	 the	 instructions	 to	compose	 the	packets,	and	any	extra	data	needed	
when	 sending	 those	 packets	 (e.g.	 an	 encrypted	 version	 of	 the	media	 data).	 Note	 that	 the	 size	 of	 the	
sample	is	known	from	the	sample	size	table.	

aligned(8) class RTPsample {
 unsigned int(16) packetcount;
 unsigned int(16) reserved;
 RTPpacket packets[packetcount];
 byte extradata[];
}

9.1.3.1 Packet Entry format

Each	packet	in	the	packet	entry	table	has	the	following	structure:	

aligned(8) class RTPpacket {
 int(32) relative_time;
 // the next fields form initialization for the RTP
 // header (16 bits), and the bit positions correspond
 bit(2) RTP_version;
 bit(1) P_bit;
 bit(1) X_bit;
 bit(4) CSRC_count;
 bit(1) M_bit;
 bit(7) payload_type;
 unsigned int(16) RTPsequenceseed;
 unsigned int(13) reserved = 0;
 unsigned int(1) extra_flag;
 unsigned int(1) bframe_flag;
 unsigned int(1) repeat_flag;
 unsigned int(16) entrycount;
 if (extra_flag) {
 uint(32) extra_information_length;
 box extra_data_tlv[];
 }
 dataentry constructors[entrycount];
}

The	semantics	of	the	fields	for	RTP	server	hint	tracks	is	specified	below.	RTP	reception	hint	tracks	use	
the	 same	 packet	 structure.	 The	 semantics	 of	 the	 fields	when	 the	 packet	 structure	 is	 used	 in	 an	 RTP	
reception	hint	track	is	specified	in	subclause	9.4.1.4.	

In	 server	hint	 tracks,	 the	relative_time	 field	 ‘warps’	 the	actual	 transmission	 time	away	 from	 the	
sample	time.	This	allows	traffic	smoothing.	

The	following	2	bytes	exactly	overlay	the	RTP	header;	they	assist	the	server	in	making	the	RTP	header	
(the	 server	 fills	 in	 the	 remaining	 fields).	 Within	 these	 2	 bytes,	 the	 fields	 RTP_version	 and	
CSRC_count	are	reserved	in	server	(transmission)	hint	tracks	and	the	server	fills	in	these	fields.	

ISO/IEC 14496-12:2015(E)

118	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	sequence	seed	is	the	basis	for	the	RTP	sequence	number.	If	a	hint	track	causes	multiple	copies	of	
the	 same	 RTP	 packet	 to	 be	 sent,	 then	 the	 seed	 value	 would	 be	 the	 same	 for	 them	 all.	 The	 server	
normally	adds	a	random	offset	to	this	value	(but	see	above,	under	‘sequenceoffset’).	

extra_flag	equal	to	1	indicates	that	there	is	extra	information	before	the	constructors,	in	the	form	
of	type‐length‐value	sets.	

extra_information_length	 indicates	 the	 length	 in	 bytes	 of	 all	 extra	 information	 before	 the	
constructors,	 which	 includes	 the	 four	 bytes	 of	 the	 extra information_length	 field.	 The	
subsequent	boxes	before	 the	constructors,	referred	to	as	 the	TLV	boxes,	are	aligned	on	32‐bit	
boundaries.	The	box	size	of	any	TLV	box	indicates	the	actual	bytes	used,	not	the	length	required	
for	 padding	 to	 32‐bit	 boundaries.	 The	 value	 of	 extra_information_length	 includes	 the	
required	padding	for	32‐bit	boundaries.	

The rtpoffsetTLV (‘rtpo’)	gives	a	32‐bit	signed	integer	offset	to	the	actual	RTP	time‐stamp	to	
place	in	the	packet.	This	enables	packets	to	be	placed	in	the	hint	track	in	decoding	order,	but	have	their	
presentation	time‐stamp	in	 the	 transmitted	packet	be	 in	a	different	order.	This	 is	necessary	 for	some	
MPEG	payloads.	

The	bframe_flag	indicates	a	disposable	‘b‐frame’.	The	repeat_flag	indicates	a	‘repeat	packet’,	one	
that	is	sent	as	a	duplicate	of	a	previous	packet.	Servers	may	wish	to	optimize	handling	of	these	packets.	

9.1.3.2 Constructor format

There	are	various	forms	of	the	constructor.	Each	constructor	is	16	bytes,	to	make	iteration	easier.	The	
first	byte	is	a	union	discriminator:	

aligned(8) class RTPconstructor(type) {
 unsigned int(8) constructor_type = type;
}

aligned(8) class RTPnoopconstructor
 extends RTPconstructor(0)
{
 uint(8) pad[15];
}

aligned(8) class RTPimmediateconstructor
 extends RTPconstructor(1)
{
 unsigned int(8) count;
 unsigned int(8) data[count];
 unsigned int(8) pad[14 - count];
}

aligned(8) class RTPsampleconstructor
 extends RTPconstructor(2)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) samplenumber;
 unsigned int(32) sampleoffset;
 unsigned int(16) bytesperblock = 1;
 unsigned int(16) samplesperblock = 1;
}

aligned(8) class RTPsampledescriptionconstructor

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 119

	

 extends RTPconstructor(3)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) sampledescriptionindex;
 unsigned int(32) sampledescriptionoffset;
 unsigned int(32) reserved;
}

The	immediate	mode	permits	the	insertion	of	payload‐specific	headers	(e.g.	the	RTP	H.261	header).	For	
hint	 tracks	where	 the	media	 is	 sent	 ‘in	 the	 clear’,	 the	sample	 entry	 then	 specifies	 the	bytes	 to	 copy	
from	the	media	track,	by	giving	the	sample	number,	data	offset,	and	length	to	copy.	The	track	reference	
may	index	into	the	table	of	track	references	(a	strictly	positive	value),	name	the	hint	track	itself	(‐1),	or	
the	only	associated	media	track	(0).	(The	value	zero	is	therefore	equivalent	to	the	value	1.)	

The	bytesperblock	 and	samplesperblock	 concern	 compressed	 audio,	 using	 a	 scheme	prior	 to	
MP4,	in	which	the	audio	framing	was	not	evident	in	the	file.	These	fields	have	the	fixed	values	of	1	for	
MP4	files.	

The	 sampledescription	 mode	 allows	 sending	 of	 sample	 descriptions	 (which	 would	 contain	
elementary	 stream	 descriptors),	 by	 reference,	 as	 part	 of	 an	 RTP	 packet.	 The	 index	 is	 the	 index	 of	 a	
SampleEntry	 in	 a	 Sample	 Description	 Box,	 and	 the	 offset	 is	 relative	 to	 the	 beginning	 of	 that	
SampleEntry.	

For	complex	cases	(e.g.	encryption	or	forward	error	correction),	the	transformed	data	would	be	placed	
into	the	hint	samples,	in	the	extradata	field,	and	then	sample	mode	referencing	the	hint	track	itself	
would	be	used.	

Notice	that	there	is	no	requirement	that	successive	packets	transmit	successive	bytes	 from	the	media	
stream.	For	example,	to	conform	with	RTP‐standard	packing	of	H.261,	 it	 is	sometimes	required	that	a	
byte	 be	 sent	 at	 the	 end	 of	 one	 packet	 and	 also	 at	 the	 beginning	 of	 the	 next	 (when	 a	 macroblock	
boundary	falls	within	a	byte).	

9.1.4 SDP Information

Streaming	 servers	 using	 RTSP	 and	 SDP	 usually	 use	 SDP	 as	 the	 description	 format;	 and	 there	 are	
necessary	 relationships	 between	 the	 SDP	 information,	 and	 the	 RTP	 streams,	 such	 as	 the	mapping	 of	
payload	 IDs	 to	 MIME	 names.	 Provision	 is	 therefore	 made	 for	 the	 hinter	 to	 leave	 fragments	 of	 SDP	
information	in	the	file,	to	assist	the	server	in	forming	a	full	SDP	description.	Note	that	there	are	required	
SDP	entries,	which	the	server	should	also	generate.	The	information	here	is	only	partial.	

SDP	information	is	formatted	as	a	set	of	boxes	within	user‐data	boxes,	at	both	the	movie	and	the	track	
level.	The	text	in	the	movie‐level	SDP	box	should	be	placed	before	any	media‐specific	lines	(before	the	
first	‘m=’	in	the	SDP	file).	

9.1.4.1 Movie SDP information

At	the	movie	level,	within	the	user‐data	(‘udta’)	box,	a	hint	information	container	box	may	occur:	

ISO/IEC 14496-12:2015(E)

120	 ©	ISO/IEC	2015	–	All	rights	reserved

	

aligned(8) class moviehintinformation extends box(‘hnti’) {
}

aligned(8) class rtpmoviehintinformation extends box(‘rtp ‘) {
 uint(32) descriptionformat = ‘sdp ‘;
 char sdptext[];
}

The	hint	information	box	may	contain	information	for	multiple	protocols;	only	RTP	is	defined	here.	The	
RTP	 box	 may	 contain	 information	 for	 various	 description	 formats;	 only	 SDP	 is	 defined	 here.	 The	
sdptext	is	correctly	formatted	as	a	series	of	lines,	each	terminated	by	<crlf>,	as	required	by	SDP.	

9.1.4.2 Track SDP Information

At	the	track	level,	the	structure	is	similar;	however,	we	already	know	that	this	track	is	an	RTP	hint	track,	
from	the	sample	description.	Therefore	the	child	box	merely	specifies	the	description	format.	

aligned(8) class trackhintinformation extends box(‘hnti’) {
}

aligned(8) class rtptracksdphintinformation extends box(‘sdp ‘) {
 char sdptext[];
}

The	sdptext	is	correctly	formatted	as	a	series	of	lines,	each	terminated	by	<crlf>,	as	required	by	SDP.	

9.1.5 Statistical Information

In	addition	to	the	statistics	in	the	hint	media	header,	the	hinter	may	place	extra	data	in	a	hint	statistics	
box,	in	the	track	user‐data	box.	This	is	a	container	box	with	a	variety	of	sub‐boxes	that	it	may	contain.	

aligned(8) class hintstatisticsbox extends box(‘hinf’) {
}

aligned(8) class hintBytesSent extends box(‘trpy’) {
 uint(64) bytessent; } // total bytes sent, including 12-byte RTP headers
 aligned(8) class hintPacketsSent extends box(‘nump’) {
 uint(64) packetssent; } // total packets sent
 aligned(8) class hintBytesSent extends box(‘tpyl’) {
 uint(64) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintBytesSent extends box(‘totl’) {
 uint(32) bytessent; } // total bytes sent, including 12-byte RTP headers
 aligned(8) class hintPacketsSent extends box(‘npck’) {
 uint(32) packetssent; } // total packets sent
 aligned(8) class hintBytesSent extends box(‘tpay’) {
 uint(32) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintmaxrate extends box(‘maxr’) { // maximum data rate
 uint(32) period; // in milliseconds
 uint(32) bytes; } // max bytes sent in any period ‘period’ long
 // including RTP headers

aligned(8) class hintmediaBytesSent extends box(‘dmed’) {
 uint(64) bytessent; } // total bytes sent from media tracks
 aligned(8) class hintimmediateBytesSent extends box(‘dimm’) {
 uint(64) bytessent; } // total bytes sent immediate mode
 aligned(8) class hintrepeatedBytesSent extends box(‘drep’) {
 uint(64) bytessent; } // total bytes in repeated packets

aligned(8) class hintminrelativetime extends box(‘tmin’) {
 int(32) time; } // smallest relative transmission time, milliseconds
 aligned(8) class hintmaxrelativetime extends box(‘tmax’) {
 int(32) time; } // largest relative transmission time, milliseconds

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 121

	

aligned(8) class hintlargestpacket extends box(‘pmax’) {
 uint(32) bytes; } // largest packet sent, including RTP header
 aligned(8) class hintlongestpacket extends box(‘dmax’) {
 uint(32) time; } // longest packet duration, milliseconds

aligned(8) class hintpayloadID extends box(‘payt’) {
 uint(32) payloadID; // payload ID used in RTP packets
 uint(8) count;
 char rtpmap_string[count]; }

NOTE	Not	all	these	sub‐boxes	may	be	present,	and	that	there	may	be	multiple	‘maxr’	boxes,	covering	different	
periods.	

9.2 ALC/LCT and FLUTE Hint Track Format

9.2.1 Introduction

The	file	format	supports	multicast/broadcast	delivery	of	files	with	FEC	protection.	Files	to	be	delivered	
are	stored	as	 items	 in	a	container	 file	(defined	by	the	 file	 format)	and	the	meta	box	 is	amended	with	
information	 on	 how	 the	 files	 are	 partitioned	 into	 source	 symbols.	 For	 each	 source	 block	 of	 a	 FEC	
encoding,	 additional	 parity	 symbols	 can	 be	 pre‐computed	 and	 stored	 as	 FEC	 reservoir	 items.	 The	
partitioning	 depends	 on	 the	 FEC	 scheme,	 the	 target	 packet	 size,	 and	 the	 desired	 FEC	 overhead.	 Pre‐
composed	source	symbols	can	be	stored	as	File	reservoir	items	to	minimize	duplicate	information	in	the	
container	 file	 especially	 with	 MBMS‐FEC.	 The	 actual	 transmission	 is	 governed	 by	 hint	 tracks	 that	
contain	server	instructions	that	facilitate	the	encapsulation	of	source	and	FEC	symbols	into	packets.	

FD	 hint	 tracks	 have	 been	 designed	 for	 the	 ALC/LCT	 (Asynchronous	 Layered	 Coding/Layered	 Coding	
Transport)	and	FLUTE	(File	Delivery	over	Unidirectional	Transport)	protocols.	LCT	provides	transport	
level	support	for	reliable	content	delivery	and	stream	delivery	protocols.	ALC	is	a	protocol	instantiation	
of	 the	 LCT	 building	 block,	 and	 it	 serves	 as	 a	 base	 protocol	 for	 massively	 scalable	 reliable	multicast	
distribution	 of	 arbitrary	 binary	 objects.	 FLUTE	 builds	 on	 top	 of	 ALC/LCT	 and	 defines	 a	 protocol	 for	
unidirectional	delivery	of	files.	

FLUTE	defines	a	File	Delivery	Table	(FDT),	which	carries	metadata	associated	with	the	files	delivered	in	
the	ALC/LCT	session,	and	provides	mechanisms	for	 in‐band	delivery	and	updates	of	FDT.	 In	contrast,	
ALC/LCT	relies	on	other	means	for	out‐of‐band	delivery	of	file	metadata,	e.g.,	an	electronic	service	guide	
that	 is	 normally	 delivered	 to	 clients	 well	 in	 advance	 of	 the	 ALC/LCT	 session	 combined	with	 update	
fragments	that	can	be	sent	during	the	ALC/LCT	session.	

File	partitionings	and	FEC	reservoirs	can	be	used	independently	of	FD	hint	tracks	and	vice	versa.	The	
former	aid	the	design	of	hint	tracks	and	allow	alternative	hint	tracks,	e.g.,	with	different	FEC	overheads,	
to	re‐use	the	same	FEC	symbols.	They	also	provide	means	to	access	source	symbols	and	additional	FEC	
symbols	 independently	 for	post‐delivery	repair,	which	may	be	performed	over	ALC/LCT	or	FLUTE	or	
out‐of‐band	 via	 another	 protocol.	 In	 order	 to	 reduce	 complexity	 when	 a	 server	 follows	 hint	 track	
instructions,	hint	tracks	refer	directly	to	data	ranges	of	items	or	data	copied	into	hint	samples.	

It	is	recommended	that	a	server	sends	a	different	set	of	FEC	symbols	for	each	retransmission	of	a	file.	

The	syntax	for	using	the	meta	box	as	a	container	file	for	source	files	is	defined	in	8.10.4,	partitions,	file	
and	FEC	reservoirs	are	defined	in	8.13,	while	the	syntax	for	FD	hint	tracks	is	defined	in	9.2.	

ISO/IEC 14496-12:2015(E)

122	 ©	ISO/IEC	2015	–	All	rights	reserved

	

9.2.2 Design principles

The	 support	 for	 file	 delivery	 is	 designed	 to	 optimize	 the	 server	 transmission	 process	 by	 enabling	
ALC/LCT	 or	 FLUTE	 servers	 to	 follow	 simple	 instructions.	 It	 is	 enough	 to	 follow	 one	 pre‐defined	
sequence	of	instructions	per	channel	in	order	to	transmit	one	session.	The	file	format	enables	storage	of	
pre‐computed	source	blocks	and	symbol	partitionings,	i.e.,	files	may	be	partitioned	into	symbols	which	
fit	an	intended	packet	size,	and	pre‐computing	a	certain	amount	of	FEC‐symbols	that	also	can	be	used	
for	 post‐session	 repair.	 The	 file	 format	 also	 allows	 storage	 of	 alternative	 ALC/LCT	 or	 FLUTE	
transmission	 session	 instructions	 that	may	 lead	 to	 equivalent	 end	 results.	 Such	 alternatives	may	 be	
intended	for	different	channel	conditions	because	of	higher	FEC	protection	or	even	by	using	different	
error	correction	schemes.	Alternative	sessions	can	refer	 to	a	common	set	of	symbols.	The	hint	 tracks	
are	flexible	and	can	be	used	to	compose	FDT	fragments	and	interleaving	of	such	fragments	within	the	
actual	 object	 transmission.	 Several	 hint	 tracks	 can	 be	 combined	 into	 one	 or	more	 sessions	 involving	
simultaneous	transmission	over	multiple	channels.	

It	 is	 important	 to	 make	 a	 difference	 between	 the	 definition	 of	 sessions	 for	 transmission	 and	 the	
scheduling	of	such	sessions.	ALC/LCT	and	FLUTE	server	 files	only	address	optimization	of	 the	server	
transmission	process.	In	order	to	ensure	maximal	usage	and	flexibility	of	such	pre‐defined	sessions,	all	
details	regarding	scheduling	addresses,	etc.	are	kept	outside	the	definition	of	 the	 file	 format.	External	
scheduling	 applications	 decide	 such	 details,	 which	 are	 not	 important	 for	 optimizing	 transmission	
sessions	 per	 se.	 In	 particular,	 the	 following	 information	 is	 out‐of‐scope	 of	 the	 file	 format:	 time	
scheduling,	target	addresses	and	ports,	source	addresses	and	ports,	and	so‐called	Transmission	Session	
Identifiers	(TSI).	

The	 sample	 numbers	 associated	 with	 the	 samples	 of	 a	 file	 delivery	 hint	 track	 provide	 a	 numbered	
sequence.	 Hint	 track	 sample	 times	 provide	 send	 times	 of	 ALC/LCT	 or	 FLUTE	 packets	 for	 a	 default	
bitrate.	Depending	on	 the	actual	 transmission	bitrate,	an	ALC/LCT	or	FLUTE	server	may	apply	 linear	
time	 scaling.	 Sample	 times	 may	 simplify	 the	 scheduling	 process,	 but	 it	 is	 up	 to	 the	 server	 to	 send	
ALC/LCT	or	FLUTE	packets	in	a	timely	manner.	

A	schematic	picture	of	a	file	containing	three	alternative	hint	tracks	with	different	FEC	overhead	for	a	
source	file	is	provided	in	Figure	6.	In	this	example,	each	source	block	consists	of	only	one	sub‐block.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 123

	

Src Sym [0-5119]

FEC Sym #2 [0-511]Src Sym [5120 -10240]FEC Sym #1 [0-511]
track #1

(10 % FEC)

FEC Sym #2 [0-614]FEC Sym #1 [0 -614]
track #2

(~12% FEC)

FEC Sym #2 [0 -716]FEC Sym #1 [0- 716]
track #3

(14 % FEC)

File item

Storage Format of a single file

FEC reservoir item s

FEC for Src Block #1

FEC for Src Block #2

Src Sym [0 -5119]

Src Sym [0 -5119]

Src Sym [5120 -10240]

Src Sym [5120 -10240]

	

Figure 4 — Different FEC overheads of a source file provided by alternative hint tracks.

The	source	file	in	the	above	figure	is	partitioned	into	2	source	blocks	containing	symbols	of	a	fixed	size.	
FEC	redundancy	symbols	are	calculated	for	both	source	blocks	and	stored	as	FEC	reservoir	items.	As	the	
hint	 tracks	 reference	 the	 same	 items	 in	 the	 file	 there	 is	 no	 duplication	 of	 information.	 The	 original	
source	symbols	and	FEC	reservoirs	can	also	be	used	by	repair	servers	that	don’t	use	hint	tracks.	

9.2.3 Sample Description Format

9.2.3.1 Definition

FD	 hint	 tracks	 are	 tracks	 with	 handler_type	 ‘hint’	 and	 with	 the	 entry‐format	 ‘fdp '	 in	 the	
sample	description	box.	The	FD	hint	sample	entry	is	contained	in	the	sample	description	box	('stsd').	

9.2.3.2 Syntax

class FDHintSampleEntry() extends SampleEntry ('fdp ') {
 unsigned int(16) hinttrackversion = 1;
 unsigned int(16) highestcompatibleversion = 1;
 unsigned int(16) partition_entry_ID;
 unsigned int(16) FEC_overhead;
 Box additionaldata[]; //optional
}

ISO/IEC 14496-12:2015(E)

124	 ©	ISO/IEC	2015	–	All	rights	reserved

	

9.2.3.3 Semantics

partition_entry_ID	indicates	the	partition	entry	in	the	FD	item	information	box.	A	zero	value	
indicates	 that	 no	 partition	 entry	 is	 associated	 with	 this	 sample	 entry,	 e.g.,	 for	 FDT.	 If	 the	
corresponding	FD	hint	track	contains	only	overhead	data	this	value	should	indicate	the	partition	
entry	whose	overhead	data	is	in	question.	

FEC_overhead	is	a	fixed	8.8	value	indicating	the	percentage	protection	overhead	used	by	the	hint	
sample(s).	 The	 intention	 of	 providing	 this	 value	 is	 to	 provide	 characteristics	 to	 help	 a	 server	
select	a	 session	group	(and	corresponding	FD	hint	 tracks).	 If	 the	corresponding	FD	hint	 track	
contains	 only	 overhead	 data	 this	 value	 should	 indicate	 the	 protection	 overhead	 achieved	 by	
using	all	FD	hint	tracks	in	a	session	group	up	to	the	FD	hint	track	in	question.	

The	hinttrackversion and	highestcompatibleversion fields	have	the	same	interpretation	
as	 in	 the	RTP	hint	 sample	entry	described	 in	9.1.2.	As	 additional	data	 a	 time	scale	 entry	box	may	be	
provided.	If	not	provided,	there	is	no	indication	given	on	timing	of	packets.	

File	entries	needed	 for	 an	FDT	or	 an	electronic	 service	guide	 can	be	 created	by	observing	all	 sample	
entries	 of	 a	 hint	 track	 and	 the	 corresponding	 item	 information	boxes	 of	 the	 items	 referenced	by	 the	
above	partition	entry	IDs.	No	sample	entries	shall	be	included	in	the	hint	track	if	they	are	not	referenced	
by	any	sample.	

9.2.4 Sample Format

9.2.4.1 Sample Container

Each	FD	sample	in	the	hint	track	will	generate	one	or	more	FD	packets.	

Each	sample	contains	 two	areas:	 the	 instructions	 to	compose	 the	packets,	and	any	extra	data	needed	
when	sending	those	packets	(e.g.,	encoding	symbols	that	are	copied	into	the	sample	instead	of	residing	
in	items	for	source	files	or	FEC).	Note	that	the	size	of	the	sample	is	known	from	the	sample	size	table.	

aligned(8) class FDsample extends Box(‘fdsa’) {
 FDPacketBox packetbox[]
 ExtraDataBox extradata; //optional
}

Sample	numbers	of	FD	 samples	define	 the	order	 they	 shall	 be	processed	by	 the	 server.	 Likewise,	 FD	
packet	boxes	 in	each	FD	sample	should	appear	 in	 the	order	 they	shall	be	processed.	 If	 the	 time	scale	
entry	box	 is	present	 in	 the	FD	hint	sample	entry,	 then	sample	 times	are	defined	and	provide	relative	
send	times	of	packets	for	a	default	bitrate.	Depending	on	the	actual	transmission	bitrate,	a	server	may	
apply	linear	time	scaling.	Sample	times	may	simplify	the	scheduling	process,	but	it	is	up	to	the	server	to	
send	packets	in	a	timely	manner.	

9.2.4.2 Packet Entry Format

Each	packet	in	the	FD	sample	has	the	following	structure	(References:	RFC	3926,	3450,	3451):	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 125

	

aligned(8) class FDpacketBox extends Box(‘fdpa’) {
 LCTheaderTemplate LCT_header_info;
 unsigned int(16) entrycount1;
 LCTheaderExtension header_extension_constructors[entrycount1];
 unsigned int(16) entrycount2;
 dataentry packet_constructors[entrycount2];
}

The	 LCT	 header	 info	 contains	 LCT	 header	 templates	 for	 the	 current	 FD	 packet.	 Header	 extension	
constructors	 are	 structures	 which	 are	 used	 for	 constructing	 the	 LCT	 header	 extensions.	 Packet	
constructors	are	used	for	constructing	the	FEC	payload	ID	and	the	source	symbols	in	an	FD	packet.	

9.2.4.3 LCT Header Template Format

The	LCT	header	template	is	defined	as	follows:	

aligned(8) class LCTheaderTemplate {
 unsigned int(1) sender_current_time_present;
 unsigned int(1) expected_residual_time_present;
 unsigned int(1) session_close_bit;
 unsigned int(1) object_close_bit;
 unsigned int(4) reserved;
 unsigned int(16) transport_object_identifier;
}

It	 can	 be	 used	 by	 a	 server	 to	 form	 an	 LCT	 header	 for	 a	 packet.	 Note	 that	 some	 parts	 of	 the	 header	
depend	on	the	server	policy	and	are	not	included	in	the	template.	Some	field	lengths	also	depend	on	the	
LCT	header	bits	assigned	by	the	server.	The	server	may	also	need	to	change	the	value	of	the	Transport	
Object	Identifier	(TOI).	

9.2.4.4 LCT Header Extension Constructor Format

The	LCT	header	extension	constructor	format	is	defined	as	follows:	

aligned(8) class LCTheaderextension {
 unsigned int(8) header_extension_type;
 if (header_extension_type > 127) {
 unsigned int(8) content[3];
 }
 else {
 unsigned int(8) length;
 if (length > 0) {
 unsigned int(8) content[(length*4) - 2];
 }
}

A	positive	value	of	the	length	field	specifies	the	length	of	the	constructor	content	in	multiples	of	32	bit	
words.	A	zero	value	means	that	the	header	is	generated	by	the	server.	

The	 usage	 and	 rules	 for	 LCT	 header	 extensions	 are	 defined	 in	 RFC	3451	 (LCT	 RFC).	 The	
header_extension_type	contains	the	LCT	Header	Extension	Type	(HET)	value.	

HET	 values	 between	 0	 and	 127	 are	 used	 for	 variable‐length	 (multiple	 32‐bit	word)	 extensions.	 HET	
values	 between	 128	 and	 255	 are	 used	 for	 fixed	 length	 (one	 32‐bit	 word)	 extensions.	 If	 the	
header_extension_type	is	smaller	than	128,	then	the	length	field	corresponds	to	the	LCT	Header	

ISO/IEC 14496-12:2015(E)

126	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Extension	Length	 (HEL)	as	defined	 in	RFC	3451.	The	content	 field	 always	 corresponds	 to	 the	Header	
Extension	Content	(HEC).	

NOTE	A	server	can	identify	packets	including	FDT	by	observing	whether	EXT_FDT	(header_extension_type
== 192)	is	present.	

9.2.4.5 Packet Constructor Format

There	 are	 various	 forms	 of	 the	 constructor.	 Each	 constructor	 is	 16	 bytes	 in	 order	 to	make	 iteration	
easier.	The	first	byte	is	a	union	discriminator.	The	packet	constructors	are	used	to	include	FEC	payload	
ID	as	well	as	source	and	parity	symbols	in	an	FD	packet.	

aligned(8) class FDconstructor(type) {
 unsigned int(8) constructor_type = type;
}

aligned(8) class FDnoopconstructor extends FDconstructor(0)
{
 unsigned int(8) pad[15];
}

aligned(8) class FDimmediateconstructor extends FDconstructor(1)
{
 unsigned int(8) count;
 unsigned int(8) data[count];
 unsigned int(8) pad[14 - count];
}

aligned(8) class FDsampleconstructor extends FDconstructor(2)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) samplenumber;
 unsigned int(32) sampleoffset;
 unsigned int(16) bytesperblock = 1;
 unsigned int(16) samplesperblock = 1;
}

aligned(8) class FDitemconstructor extends FDconstructor(3)
{
 unsigned int(16) item_ID;
 unsigned int(16) extent_index;
 unsigned int(64) data_offset; //offset in byte within extent
 unsigned int(24) data_length; //non-zero length in byte within extent or
 //if (data_length==0) rest of extent
}

aligned(8) class FDitemconstructorLarge extends FDconstructor(5)
{
 unsigned int(32) item_ID;
 unsigned int(32) extent_index;
 unsigned int(64) data_offset; //offset in byte within extent
 unsigned int(24) data_length; //non-zero length in byte within extent or
 //if (data_length==0) rest of extent
}

aligned(8) class FDxmlboxconstructor extends FDconstructor(4)
{
 unsigned int(64) data_offset; //offset in byte within XMLBox or BinaryXMLBox
 unsigned int(32) data_length;
 unsigned int(24) reserved;
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 127

	

9.2.4.6 Extra Data Box

Each	sample	of	an	FD	hint	track	may	include	extra	data	stored	in	an	extra	data	box:	

aligned(8) class ExtraDataBox extends Box(‘extr’) {
 FECInformationBox feci;
 bit(8) extradata[];
}

9.2.4.7 FEC Information Box

9.2.4.7.1 Definition

Box	Type:	 ‘feci’	
Container:	 Extra	Data	Box	(‘extr’)	
Mandatory:	 No	
Quantity:	 Zero	or	One	

The	FEC	Information	box	stores	FEC	encoding	ID,	FEC	instance	ID	and	FEC	payload	ID	which	are	needed	
when	sending	an	FD	packet.	

9.2.4.7.2 Syntax

aligned(8) class FECInformationBox extends Box('feci') {
 unsigned int(8) FEC_encoding_ID;
 unsigned int(16) FEC_instance_ID;
 unsigned int(16) source_block_number;
 unsigned int(16) encoding_symbol_ID;
}

9.2.4.7.3 Semantics

FEC_encoding_ID identifies	 the	FEC	encoding	scheme	and	 is	subject	 to	 IANA	registration	(see	
RFC	 5052),	 in	 which	 (i)	 value	 zero	 corresponds	 to	 the	 "Compact	 No‐Code	 FEC	 scheme"	 also	
known	 as	 "Null‐FEC"	 (RFC	3695);	 (ii)	 value	 one	 corresponds	 to	 the	 “MBMS	 FEC”	 (3GPP	 TS	
26.346);	 (iii)	 for	 values	 in	 the	 range	of	 0	 to	127,	 inclusive,	 the	FEC	 scheme	 is	 Fully‐Specified,	
whereas	for	values	in	the	range	of	128	to	255,	inclusive,	the	FEC	scheme	is	Under‐Specified.	

FEC_instance_ID provides	a	more	specific	identification	of	the	FEC	encoder	being	used	for	an	
Under‐Specified	FEC	scheme.	This	value	should	be	set	to	zero	for	Fully‐Specified	FEC	schemes	
and	 shall	 be	 ignored	 when	 parsing	 a	 file	 with	 FEC_encoding_ID	 in	 the	 range	 of	 0	 to	 127,	
inclusive.	FEC_instance_ID	is	scoped	by	the	FEC_encoding_ID.	See	RFC	5052	for	further	details.	

source_block_number identifies	from	which	source	block	of	the	object	the	encoding	symbol(s)	
in	the	FD	packet	are	generated.	

encoding_symbol_ID identifies	which	specific	encoding	symbol(s)	generated	 from	the	source	
block	are	carried	in	the	FD	packet.	

9.3 MPEG-2 Transport Hint Track Format

9.3.1 Introduction

MPEG‐2	TS	(Transport	Stream)	is	a	stream	multiplex	which	can	carry	one	or	more	programs,	consisting	
of	audio,	video	and	other	media.	The	file	format	supports	the	storage	of	MPEG‐2	TS	in	a	hint	track.	An	
MPEG‐2	TS	hint	track	can	be	used	for	both	storage	of	received	TS	packets	(as	a	reception	hint	track),	
and	as	a	server	hint	track	used	for	the	generation	of	an	MPEG‐2	TS.	

ISO/IEC 14496-12:2015(E)

128	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	MPEG‐2	TS	hint	track	definition	supports	so‐called	“precomputed	hints”.	Precomputed	hints	make	
no	use	of	 including	data	by	reference	 from	other	 tracks,	but	 rather	MPEG‐2	TS	packets	are	stored	as	
such.	This	allows	reusing	the	MPEG‐2	TS	packets	stored	in	a	separate	file.	Furthermore,	precomputed	
hints	facilitate	simple	recording	operation.	

In	 addition	 to	 precomputed	 hint	 samples,	 it	 is	 possible	 to	 include	media	 data	 by	 reference	 to	media	
tracks	 into	 hint	 samples.	 Conversion	 of	 a	 received	 transport	 stream	 to	 media	 tracks	 would	 allow	
existing	players	compliant	with	earlier	versions	of	the	ISO	base	media	file	format	to	process	recorded	
files	 as	 long	 as	 the	media	 formats	 are	 also	 supported.	 Storing	 the	 original	 transport	 headers	 retains	
valuable	information	for	error	concealment	and	the	reconstruction	of	the	original	transport	stream.	

9.3.2 Design Principles

The	design	principles	of	the	MPEG‐2	TS	Hint	Track	Format	are	as	follows.	

A	sequence	of	samples	in	an	MPEG‐2	TS	Hint	Track	is	a	set	of	precomputed	and	constructed	MPEG‐2	TS	
packets.	Precomputed	packets	are	TS	packets	which	are	stored	unchanged	in	the	case	of	reception	or	
will	 be	 sent	 as	 is.	 This	 is	 especially	 important	where	 data	 cannot	 be	 de‐multiplexed	 and	 elementary	
streams	cannot	be	created	–	e.g.	when	the	transport	stream	is	encrypted	and	is	not	allowed	to	be	stored	
decrypted.	 Therefore,	 it	 is	 necessary	 to	 be	 able	 to	 store	 the	 MPEG‐2	 TS	 as	 such	 in	 a	 hint	 track.	
Constructed	packets	use	the	same	approach	as	RTP	hint	tracks,	i.e.,	the	sample	contains	instructions	for	
a	streaming	server	to	construct	the	packet.	The	actual	media	data	is	contained	in	other	tracks.	A	track	
reference	of	type	‘hint’	is	used.	

9.3.2.1 Reusing existing Transport Streams

It	was	desired	to	reuse	existing	TS	instances	and	therefore	an	additional	mechanism	exists	to	cover	a	
wide	variety	of	existing	TS	recordings.	These	recordings	may	consist	not	only	of	TS	packets	but	have	
preceding	or	trailing	data	with	each	TS	packet.	A	specific	case	for	preceding	data	is	a	4‐byte	timestamp	
in	front	of	each	TS	packet	to	remove	the	jitter	of	a	transmission	system.	A	specific	case	for	trailing	data	
is	the	addition	of	FEC	when	a	TS	packet	is	transmitted	over	an	error‐prone	channel.	

9.3.2.2 Timing

MPEG‐2	 TS	 defines	 a	 single	 clock	 for	 each	 program,	 running	 at	 27MHz,	 which	 sampling	 value	 is	
transported	 as	 PCRs	 in	 the	 TS	 for	 clock	 recovery.	 The	 timescale	 of	 MPEG‐2	 TS	 Hint	 Tracks	 is	
recommended	to	be	90000,	or	an	integer	division	or	multiple	thereof.	

The	decoding	time	of	a	sample	in	a	MPEG‐2	TS	Hint	Track	is	the	reception/transmission	time	of	the	first	
bit	of	that	packet	or	packet	group	which	is	recommended	to	be	derived	from	the	PCR	timestamps	of	the	
TS,	since	 if	 the	PCR	times	are	used,	piece‐wise	 linearity	can	be	assumed	and	the	 ‘stts’	 table	compacts	
sensibly.	 The	 optional	 ‘tsti’	 box	 in	 the	 sample	 description	 can	 be	 used	 to	 signal	 whether	 reception	
timing	with	or	without	clock	recovery	was	used	when	the	hint	track	is	a	reception	hint	track.	In	the	case	
of	a	server	hint	track	PCR	timing	is	assumed.	

NOTE:	When	there	are	multiple	packets	in	a	sample,	they	cannot	be	given	independent	transmission	time	offsets.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 129

	

9.3.2.3 Packet Grouping

The	sample	format	for	MPEG‐2	Transport	Stream	Hint	Tracks	allows	multiple	TS	packets	in	one	sample.	
Specific	 applications,	 such	as	 some	 IPTV	applications,	 convey	TS	packets	 in	 an	RTP	stream.	Only	one	
reception	timestamp	can	be	derived	for	all	TS	packets	carried	in	one	RTP	packet.	Another	application	
for	storing	multiple	TS	packets	in	a	sample	is	SPTSs,	where	a	sample	contains	all	the	TS	packets	for	a	
GoP.	In	this	case	every	sample	is	a	random	access	point.	

Note	that	random‐access	to	every	TS	packet	is	not	possible	by	the	means	of	the	file	format	if	multiple	TS	
packets	per	sample	are	used.	

In	the	case	of	an	MPTS	only	one	packet	per	sample	should	be	used.	This	facilitates	the	use	of	the	sample	
group	mechanism	on	a	per‐packet	basis.	

9.3.2.4 Random-access points

A	sync	sample	is	a	point	at	which	processing	of	a	track	may	begin	without	error.	Both	MPTS	and	SPTS	
are	supported	by	MPEG‐2	TS	Hint	Tracks,	however	a	random	access	point,	marked	as	a	sync	sample,	is	
normally	only	defined	for	SPTS,	where	it	specifies	the	beginning	of	a	packet	that	contains	the	first	byte	
of	 an	 independently	 decodable	 media	 access	 unit	 (e.g.	 MPEG‐2	 video	 I‐frames	 or	 MPEG‐4	 AVC	 IDR	
pictures)	of	a	stream	that	uses	differential	coding.	For	MPTS,	the	sync	sample	table	would	normally	be	
present	but	empty,	indicating	that	there	is	no	point	in	the	track	at	which	processing	of	the	entire	track	
may	begin	without	error.	It	is	recommended	that	the	PSI/SI	be	in	the	Sample	Description	so	that	true	
random‐access	with	just	the	media	data	is	possible.	

Note	that	in	the	case	of	an	MPTS,	the	sync	sample	table	is	present	but	empty	(which	means	essentially	
that	no	sample	is	a	sync	sample).	

Note	also	that	in	case	of	an	SPTS,	samples	including	multiple	TS	packets	should	have	a	sync	point	(e.g.	
GoP	boundary)	at	the	start	of	a	sample.	The	sync	sample	table	then	marks	the	samples	the	sync	points	
(e.g.	 the	start	of	GoPs);	 if	 the	sync	sample	 table	 is	absent,	all	 the	samples	are	sync	points.	 If	 the	sync	
sample	table	is	present	but	empty,	the	sync	sample	positions	are	unknown	and	may	be	not	at	the	start	
of	samples.	

NOTE:	 An	application	searching	for	a	key	frame	can	start	reading	at	that	location,	but	in	general	it	also	has	to	read	
further	MPEG‐2	TS	packets	(regarding	the	file	format	these	are	subsequent	samples)	so	that	the	decoder	can	
decode	a	complete	frame.	

9.3.2.5 Application as a Reception Hint Track

Reception	 hint	 tracks	 may	 be	 used	 when	 one	 or	 more	 packet	 streams	 of	 data	 are	 recorded.	 They	
indicate	the	order,	reception	timing,	and	contents	of	the	received	packets	among	other	things.	

NOTE	1:	Players	may	reproduce	the	packet	stream	that	was	received	based	on	the	reception	hint	tracks	and	process	
the	reproduced	packet	stream	as	if	it	was	newly	received.	

Reception	hint	tracks	have	the	same	structure	as	hint	tracks	for	servers.	

The	format	of	the	reception	hint	samples	is	indicated	by	the	sample	description	for	the	reception	hint	
track.	Each	protocol	has	its	own	reception	hint	sample	format	and	name.	

ISO/IEC 14496-12:2015(E)

130	 ©	ISO/IEC	2015	–	All	rights	reserved

	

NOTE	2:	Servers	using	reception	hint	tracks	as	hints	for	sending	of	the	received	streams	should	handle	the	potential	
degradations	 of	 the	 received	 streams,	 such	 as	 transmission	 delay	 jitter	 and	 packet	 losses,	 gracefully	 and	
ensure	 that	 the	 constraints	 of	 the	 protocols	 and	 contained	 data	 formats	 are	 obeyed	 regardless	 of	 the	
potential	degradations	of	the	received	streams.	

NOTE	3:	As	with	server	hint	tracks,	the	sample	formats	of	reception	hint	tracks	may	enable	construction	of	packets	by	
pulling	data	out	of	other	tracks	by	reference.	These	other	tracks	may	be	hint	tracks	or	media	tracks.	The	exact	
form	of	 these	pointers	 is	defined	by	the	sample	 format	 for	 the	protocol,	but	 in	general	 they	consist	of	 four	
pieces	of	information:	a	track	reference	index,	a	sample	number,	an	offset,	and	a	length.	Some	of	these	may	be	
implicit	for	a	particular	protocol.	These	'pointers'	always	point	to	the	actual	source	of	the	data,	i.e.,	indirect	
data	referencing	is	disallowed.	If	a	hint	track	is	built	'on	top'	of	another	hint	track,	then	the	second	hint	track	
must	have	direct	 references	 to	 the	media	 track(s)	used	by	 the	 first	where	data	 from	those	media	 tracks	 is	
placed	in	the	stream.	

If	received	data	is	extracted	to	media	tracks,	the	de‐hinting	process	must	ensure	that	the	media	streams	
are	valid,	i.e.	the	streams	must	be	error‐free	(which	requires	e.g.	error	concealment).	

A	sample	with	a	size	of	zero	is	permitted	in	reception	hint	tracks,	and	such	samples	may	be	ignored.	

9.3.3 Sample Description Format

9.3.3.1 Introduction

The	sample	description	for	an	MPEG2‐TS	reception	hint	track	contains	all	static	metadata	that	describe	
the	 stream	or	a	portion	 thereof,	 especially	 the	PSI/SI	 tables.	MPEG‐2	TS	 reception	hint	 tracks	use	an	
entry‐format	in	the	sample	description	of	'rm2t'	(which	indicates	MPEG-2 Transport Stream).	The	entry‐
format	for	MPEG2‐TS	server	hint	tracks	is	'sm2t'.	

The	 static	metadata	 documents	 e.g.	 PSI/SI	 tables.	 The	 presence	 of	 static	metadata	 is	 optional.	When	
present,	 the	 static	metadata	 shall	 be	 valid	 for	 the	MPEG2‐TS	 packets	 it	 describes.	 Consequently,	 if	 a	
piece	of	static	metadata	changes	in	the	stream,	a	new	sample	entry	is	needed	for	the	first	sample	at	or	
after	the	change.	If	static	metadata	is	not	present	in	the	sample	entry,	structures,	such	as	PSI/SI	tables,	
stored	in	the	MPEG2‐TS	packets	are	valid	and	the	stream	must	be	scanned	in	order	to	find	out	which	
values	of	static	metadata	are	valid	for	a	particular	sample.	

9.3.3.2 Syntax

class MPEG2TSReceptionSampleEntry extends MPEG2TSSampleEntry(`rm2t´) {
}

class MPEG2TSServerSampleEntry extends MPEG2TSSampleEntry(`sm2t´) {
}

class MPEG2TSSampleEntry(name) extends HintSampleEntry(name) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(8) precedingbyteslen;
 uint(8) trailingbyteslen;
 uint(1) precomputed_only_flag;
 uint(7) reserved;
 box additionaldata[];
}

9.3.3.3 Semantics

hinttrackversion	 is	 currently	 1;	 the	 highestcompatibleversion	 field	 specifies	 the	 oldest	
version	with	which	this	track	is	backward‐compatible.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 131

	

precedingbyteslen	 indicates	 the	 number	 of	 bytes	 that	 are	 preceding	 each	 MPEG2‐TS	 packet	
(which	may	e.g.	be	a	time‐code	from	an	external	recording	device).	

trailingbyteslen	 indicates	 the	 number	 of	 bytes	 that	 are	 at	 the	 end	 of	 each	MPEG2‐TS	 packet	
(which	may	e.g.	contain	checksums	or	other	data	that	was	added	by	a	recording	device).	

precomputed_only_flag	indicates	whether	the	associated	samples	are	purely	precomputed	if	set	
to	1;	

additionaldata	is	a	set	of	boxes.	This	set	can	contain	boxes	that	describe	one	common	version	of	
the	PSI/SI	tables	by	means	of	the	'tPAT'	box	or	the	'tPMT'	box	or	other	data,	e.g.	boxes	that	are	
only	valid	for	a	sample	(which	contains	multiple	packets)	and	describe	the	initial	conditions	of	
the	STC	or	boxes	that	define	the	content	of	the	preceding	or	trailing	data.	There	shall	be	at	most	
one	of	each	of	PATBox,	TSTimingBox,	InitialSampleTimeBox	present	within	additionaldata	

The	following	optional	boxes	for	additionaldata	are	defined:	

aligned(8) class PATBox() extends Box(‘tPAT’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class PMTBox() extends Box(‘tPMT’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class ODBox () extends Box (‘tOD ’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class TSTimingBox() extends Box(‘tsti’) {
 uint(1) timing_derivation_method;
 uint(2) reserved;
 uint(13) PID;
}

aligned(8) class InitialSampleTimeBox() extends Box(‘istm’) {
 uint(32) initialsampletime;
 uint(32) reserved;
}

The	'tPAT'	box	contains	the	section	data	of	the	PAT	and	each	'tPMT'	box	contains	the	section	data	of	one	
of	the	PMTs.	

In	 the	 case	 of	 an	 SPTS,	 it	 is	 strongly	 recommended	 that	 the	 'tPMT'	 box	 is	 present	 in	 the	
additionaldata.	 If	 the	 PMT	 is	 not	 present	 in	 the	 sample	 data,	 then	 it	 shall	 be	 present	 in	 the	
additionaldata.	 If	 the	 'tPMT'	 box	 is	 present,	 it	 shall	 be	 the	 PMT	 for	 the	 program	 contained	 in	 the	
sample	data	(although	the	recorded	stream	may	contain	other	programs	and	be	an	MPTS).	

PID	is	the	PID	of	the	MPEG2‐TS	packets	from	which	the	data	was	extracted.	In	the	case	of	the	'tPAT'	
box	this	value	is	always	0.	

sectiondata	 extends	 to	 the	 end	of	 the	 box	 and	 is	 the	 complete	MPEG2‐TS	 table,	 containing	 the	
concatenated	sections,	of	an	identical	version	number.	

initialsampletime	specifies	the	initial	value	of	the	sample	times	in	case	the	sample	times	do	not	
start	from	0.	Unlike	media	tracks,	MPEG‐2	TS	hint	track	usually	have	sample	times	not	starting	

ISO/IEC 14496-12:2015(E)

132	 ©	ISO/IEC	2015	–	All	rights	reserved

	

from	0,	 e.g.,	 PCR	 times	 and	 reception	 times.	 Since	 ‘stts’	 only	 stores	 the	delta	between	 sample	
times,	this	field	is	required	for	reconstructing	the	original	sample	times:	

	 	 OriginalSampleTime(n) = initialsampletime + STTS(n).
In	case	PCR	times	are	used	for	sample	times,	the	reconstructed	sample	time	can	be	used	to	initialize	

the	STC	when	the	sample	is	randomly	accessed.	Note	that	this	field	may	need	to	be	updated	after	
editing.	

timing_derivation_method	 is	 a	 flag	 which	 specifies	 the	 method	 which	 was	 used	 to	 set	 the	
sample	time	for	a	given	PID.	The	values	for	timing_derivation_method	are	as	follows:	
0x0	reception	time:	the	sample	timing	is	derived	from	the	reception	time.	It	is	not	guaranteed	

that	the	STC	was	recovered	for	derivation	of	the	reception	time.	

0x1	piecewise	linearity	between	PCRs:	the	sample	time	is	derived	from	a	reconstructed	STC	for	
this	program.	Piecewise	linearity	between	adjacent	PCRs	is	assumed	and	all	TS	packets	
in	the	samples	have	a	constant	duration	in	this	range.	

9.3.4 Sample Format

Each	sample	of	an	MPEG‐2	TS	Hint	track	consists	of	a	set	of	

 pre‐computed	packets:	one	or	more	MPEG‐2	TS	packets	with	the	associated	headers	and	trailers	

 constructed	packets:	instructions	to	compose	one	or	more	MPEG2‐TS	packets	with	the	
associated	headers	and	trailers	by	pointing	to	data	of	another	track.	

Note	that	each	MPEG‐2	TS	packet	in	the	sample	may	be	preceded	with	a	preheader	(precedingbytes),	
or	followed	by	a	posttrailer	(trailingbytes),	as	detailed	in	the	Sample	Description	Format.	The	size	of	
the	 preheader	 and	 the	 posttrailer	 are	 specified	 by	 precedingbyteslen	 and	 trailingbyteslen,	
respectively,	in	the	sample	description	to	allow	compact	sample	tables	with	fewer	chunks.	

It	 is	 possible	 for	 a	 mixture	 of	 precomputed	 and	 constructed	 samples	 to	 occur	 in	 the	 same	 track.	 If	
padding	 of	 the	 transport	 stream	 packet	 is	 required,	 this	 can	 be	 accomplished	 with	 the	
adaptation_field	or	explicitly	by	using	the	MPEG2TSImmediateConstructor	as	appropriate.	

NOTE	1:	 The	number	of	MPEG‐2	TS	packets	in	the	sample	can	be	derived	from	the	sample	size	table	directly	if	
the	 sample	 consists	 of	 pre‐computed	 packets	 only,	 which	 is	 a	 conclusion	 if	 the	
precomputed_only_flag	in	the	sample	entry	is	set.	The	number	of	MPEG‐2	TS	packets	in	the	
sample	may	be	variable	or	restricted,	e.g.	extensions	of	this	file	format	may	define	a	sample	to	contain	
exactly	one	packet.	

NOTE	2	 It	is	possible	to	compact	common	sequences	of	bytes	in	transport	packets	by	including	those	bytes	in	
one	or	more	packets	directly	 for	 example	 in	 their	precedingbytes	 or	trailingbytes	 section,	
and	 then	 using	 the	MPEG2TSSampleConstructor	 in	 other	 places	 to	 refer	 to	 them;	 this	 is	 especially	
relevant	for	runs	of	0xFF	bytes.	

9.3.4.1 Syntax

// Constructor format
aligned(8) abstract class MPEG2TSConstructor (uint(8) type) {
 uint(8) constructor_type = type;
}

aligned(8) class MPEG2TSImmediateConstructor
 extends MPEG2TSConstructor(1) {
 uint(8) immediatedatalen;
 uint(8) data[immediatedatalen];
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 133

	

aligned(8) class MPEG2TSSampleConstructor
 extends MPEG2TSConstructor(2) {
 uint(8) sampledatalen;
 uint(16) trackrefindex;
 uint(32) samplenumber;
 uint(32) sampleoffset;
}

// Packet format
aligned(8) class MPEG2TSPacketRepresentation {
 uint(8) precedingbytes[precedingbyteslen];
 uint(8) sync_byte;
 if (sync_byte == 0x47) {
 uint(8) packet[187];
 } else if (sync_byte == 0x00 || sync_byte == 0x01) {
 uint(8) headerdatalen;
 uint(4) reserved;
 uint(4) num_constructors;
 bit(1) transport_error_indicator;
 bit(1) payload_unit_start_indicator;
 bit(1) transport_priority;
 bit(13) PID;
 bit(2) transport_scrambling_control;
 bit(2) adaptation_field_control;
 bit(4) continuity_counter;
 if (sync_byte == 0x00 && (adaptation_field_control == ´10´ ||
 adaptation_field_control == ´11´)) {
 uint(8) adaptation_field[headerdatalen-3];
 }
 MPEG2TSConstructor constructors[num_constructors];
 } else if (sync_byte == 0xFF) {
 // implicit null packet that has been removed
 }
 uint(8) trailingbytes[trailingbyteslen];
}
// Sample format
aligned(8) class MPEG2TSSample {
 MPEG2TSPacketRepresentation sample[];
}

9.3.4.2 Semantics

precedingbytes	contains	any	extra	data	preceding	the	packet,	typically	provided	by	the	recording	
device.	For	example,	this	may	include	a	timestamp.	

sync_byte:	if	this	value	is	0x47,	then	the	packet	representation	contains	a	transport	stream	packet	
(a	precomputed	reception	hint	track	sample),	with	the	remaining	bytes	following	in	the	field	
packet.	The	values	0x00	and	0x01	are	used	for	constructed	packet	representation(s).	If	
MPEG2TSSampleConstructor	is	used	to	construct	packet	representation(s),	it	points	to	a	track	
indexed	by	trackrefindex	in	the	track	reference	box	with	reference	type	'hint'.	If	this	value	is	
0xFF,	it	implies	that	a	null	packet	has	been	removed	at	this	position.	All	other	values	are	
currently	reserved.	

trackrefindex	indexes	in	the	track	reference	box	with	reference	type	'hint'	to	indicate	with	which	
media	track	the	current	sample	is	associated.	The	samplenumber	and	sampleoffset	 fields	in	
the	MPEG2TSSampleConstructor	point	into	this	media	track.	The	trackrefindex	starts	from	
value	1.	The	value	0	is	reserved	for	future	use.	

packet:	The	MPEG‐2	TS	packet,	apart	from	the	sync	byte	(0x47).	
The	MPEG2TSConstructor	 array	 is	 a	 collection	 of	 one	 or	more	 constructor	 entries,	 to	 allow	 for	

multiple	access	units	in	one	transport	stream	packet.	An	MPEG2TSImmediateConstructor	can	
contain,	amongst	others,	 the	PES	header.	An	MPEG2TSSampleConstructor	 references	data	 in	
the	 associated	 media	 track.	 The	 sum	 of	 headerdatalen	 and	 the	 datalen	 fields	 of	 all	
constructors	of	an	MPEG2TSPacket	must	be	equal	to	the	length	of	the	transport	stream	packet	
being	constructed,	minus	1	byte,	which	is	187.	

ISO/IEC 14496-12:2015(E)

134	 ©	ISO/IEC	2015	–	All	rights	reserved

	

trailingbytes	 contains	 any	 extra	 data	 following	 the	 packet.	 For	 example,	 this	 may	 include	 a	
checksum.	

samplenumber	 indicates	 the	 sample	 within	 the	 referred	 track	 contained	 in	 the	 packet	 and	
sampleoffset	 indicates	 the	starting	byte	position	of	 the	referred	media	 sample	contained	 in	
the	packet	of	which	sampledatalen	bytes	are	included.	sampleoffset	starts	from	value	0.	

immediatedatalen	 indicates	 the	number	of	 bytes	within	 the	 field	data	 that	 are	 included	 in	 the	
sample	rather	than	data	being	included	into	the	sample	by	reference	to	a	media	track.	

headerdatalen	indicates	the	length	of	the	TS	packet	header	(without	the	sync	byte)	in	bytes.	This	
field	 has	 the	 value	 3	 if	 the	 adaptation_field	 is	 not	 present	 or	 the	 value	
(adaptation_field_length+3),	 where	 adaptation_field_length	 is	 the	 first	 octet	 of	 the	
structure	adaptation_field as	defined	in	ISO/IEC	13818‐1	.	

Neither	the	format	of	precedingbytes	nor	trailingbytes	are	defined	by	this	specification.	

The	 remaining	 fields	 (transport_error_indicator,	 payload_unit_start_indicator,	
transport_priority,	 PID,	 transport_scrambling_control,	 adaptation_field_control,	
continuity_counter,	 adaptation_field)	 of	 the	 sample	 structure	 contain	 a	 copy	 of	 the	 packet	
header	of	the	TS	packet,	as	defined	in	ISO/IEC	13818‐1.	

9.3.5 Protected MPEG 2 Transport Stream Hint Track

9.3.5.1 Introduction

This	Subclause	defines	a	mechanism	for	marking	media	streams	as	protected.	This	works	by	changing	
the	 four	 character	 code	 of	 the	 SampleEntry,	 and	 appending	 boxes	 containing	 both	 details	 of	 the	
protection	 mechanism	 and	 the	 original	 four	 character	 code.	 However,	 in	 this	 case	 the	 track	 is	 not	
protected;	it	is	an	‘in	the	clear’	hint	track	which	contains	protected	data.	This	Subclause	describes	how	
hint	tracks	should	be	marked	as	carrying	protected	data,	using	a	similar	mechanism,	and	utilizing	the	
same	boxes.	

9.3.5.2 Syntax

class ProtectedMPEG2TransportStreamSampleEntry
 extends MPEG2TransportStreamSampleEntry(‘pm2t’) {
 ProtectionSchemeInfoBox SchemeInformation;
}

9.3.5.3 Semantics

The	 SchemeInformation	 (‘sinf’)	 box	 (defined	 in	 0)	 shall	 contain	 details	 of	 the	 protection	 scheme	
applied.	This	shall	include	the	OriginalFormatBox	which	shall	contain	the	original	sample	entry	type	
of	the	MPEG‐2	Transport	StreamSampleEntry	box.	

9.4 RTP, RTCP, SRTP and SRTCP Reception Hint Tracks

9.4.1 RTP Reception Hint Track

9.4.1.1 Introduction

This	Subclause	specifies	the	reception	hint	track	format	for	the	real‐time	transport	protocol	(RTP),	as	
defined	in	IETF	RFC	3550.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 135

	

RTP	 is	 used	 for	 real‐time	media	 transport	 over	 the	 Internet	 Protocol.	 Each	 RTP	 stream	 carries	 one	
media	 type,	 and	one	RTP	reception	hint	 track	carries	one	RTP	stream.	Hence,	 recording	of	 an	audio‐
visual	program	results	into	at	least	two	RTP	reception	hint	tracks.	

The	design	of	 the	RTP	reception	hint	 track	 format	 follows	as	much	as	possible	 the	design	of	 the	RTP	
server	 hint	 track	 format.	 This	 design	 should	 ensure	 that	 RTP	 packet	 transmission	 operates	 very	
similarly	 regardless	 whether	 it	 is	 based	 on	 RTP	 reception	 hint	 tracks	 or	 RTP	 server	 hint	 tracks.	
Furthermore,	the	number	of	new	data	structures	 in	the	file	 format	was	consequently	kept	as	small	as	
possible.	

The	format	of	the	RTP	reception	hint	tracks	allow	storing	of	the	packet	payloads	in	the	hint	samples,	or	
converting	 the	 RTP	 packet	 payloads	 to	 media	 samples	 and	 including	 them	 by	 reference	 to	 the	 hint	
samples,	 or	 combining	 both	 approaches.	 As	 noted	 earlier,	 conversion	 of	 received	 streams	 to	 media	
tracks	 allows	 existing	 players	 compliant	 with	 earlier	 versions	 of	 the	 ISO	 base	 media	 file	 format	 to	
process	recorded	files	as	long	as	the	media	formats	are	also	supported.	Storing	the	original	RTP	headers	
retains	valuable	information	for	error	concealment	and	the	reconstruction	of	the	original	RTP	stream.	It	
is	noted	that	the	conversion	of	packet	payloads	to	media	samples	may	happen	"off‐line"	after	recording	
of	the	streams	in	precomputed	RTP	reception	hint	tracks	has	been	completed.	

9.4.1.2 Sample Description Format

The	entry‐format	in	the	sample	description	for	the	RTP	reception	hint	tracks	is	'rrtp'.	The	syntax	of	the	
sample	entry	is	the	same	as	for	RTP	server	hint	tracks	having	the	entry‐format	'rtp	'.	

class ReceivedRtpHintSampleEntry() extends SampleEntry (‘rrtp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

The	entry‐format	identifier	in	the	sample	description	of	the	RTP	reception	hint	track	is	different	from	
the	entry‐format	in	the	sample	description	of	the	RTP	server	hint	track,	in	order	to	avoid	using	an	RTP	
reception	hint	track	that	contains	errors	as	a	valid	server	hint	track.	

The	 additionaldata	 set	 of	 boxes	 may	 include	 the	 timescale	 entry	 ('tims')	 and	 time	 offset	 ('tsro')	
boxes.	Moreover,	the	additionaldata	may	contain	a	timestamp	synchrony	box.	

The	timescale	entry	box	(‘tims’)	shall	be	present	and	the	value	of	timescale	shall	be	set	to	match	the	
clock	frequency	of	the	RTP	timestamps	of	the	stream	captured	in	the	reception	hint	track.	

The	time	offset	box	(‘tsro’)	may	be	present.	If	the	time	offset	box	is	not	present,	the	value	of	the	field	
offset	is	inferred	to	be	equal	to	0.	The	value	of	the	field	offset	is	used	for	the	derivation	of	the	RTP	
timestamp,	as	specified	in	9.4.1.4.	

RTP	timestamps	typically	do	not	start	from	zero,	especially	if	an	RTP	receiver	'tunes'	into	a	stream.	The	
time	offset	box	should	therefore	be	present	in	RTP	reception	hint	tracks	and	the	value	of	offset	in	the	
time	offset	box	should	be	set	equal	to	the	first	RTP	timestamp	of	the	RTP	stream	in	reception	order.	

ISO/IEC 14496-12:2015(E)

136	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Zero	or	one	timestampsynchrony	boxes	may	be	present	in	the	additionaldata	of	the	sample	entry	
for	 a	 RTP	 reception	 hint	 track.	 If	 a	 timestampsynchrony	 box	 is	 not	 present,	 the	 value	 of	
timestamp_sync	is	inferred	to	be	equal	to	0.	

class timestampsynchrony() extends Box(‘tssy’) {
 unsigned int(6) reserved;
 unsigned int(2) timestamp_sync;
}

timestamp_sync	equal	 to	0	 indicates	that	 the	RTP	timestamps	of	 the	present	RTP	reception	hint	
track	 derived	 from	 the	 Formula	 in	 9.4.1.4	 may	 or	 may	 not	 be	 synchronized	 with	 RTP	
timestamps	of	other	RTP	reception	hint	tracks.	

timestamp_sync	equal	 to	1	 indicates	that	 the	RTP	timestamps	of	 the	present	RTP	reception	hint	
track	derived	from	the	Formula	in	9.4.1.4	reflect	the	received	RTP	timestamps	exactly	(without	
corrected	synchronization	to	any	other	RTP	reception	hint	track).	

timestamp_sync	equal	to	2	indicates	that	RTP	timestamps	of	the	present	RTP	reception	hint	track	
derived	 from	 the	 Formula	 in	 9.4.1.4	 are	 synchronized	 with	 RTP	 timestamps	 of	 other	 RTP	
reception	hint	tracks.	

When	timestamp_sync	 is	 equal	 to	 0	 or	 1,	 a	 player	 should	 correct	 the	 inter‐stream	 synchronization	
using	 stored	RTCP	 sender	 reports.	When	timestamp_sync	 is	 equal	 to	2,	 the	media	 contained	 in	 the	
RTP	 reception	 hint	 tracks	 can	 be	 played	 out	 synchronously	 according	 to	 the	 reconstructed	 RTP	
timestamps	without	 synchronization	 correction	using	RTCP	Sender	Reports.	 If	 it	 is	 expected	 that	 the	
RTP	reception	hint	track	will	be	used	for	re‐sending	the	recorded	RTP	stream,	it	is	recommended	that	
timestamp_sync	be	set	equal	to	0	or	1,	because	the	stored	RTCP	sender	reports	can	be	reused.	

timestamp_sync	equal	to	3	is	reserved.	

The	value	of	timestamp_sync	shall	be	identical	for	all	RTP	reception	hint	tracks	present	in	a	file.	

When	RTCP	is	also	stored,	using	an	RTCP	hint	track,	the	timestamp	relationship	between	the	RTP	and	
RTCP	hint	tracks	can	only	be	maintained	if	the	RTP	timestamps	are	anchored	by	using	a	set	time	offset	
(‘tsro’)	in	the	RTP	track,	and	hence	the	time	offset	is	mandatory	if	RTCP	is	stored	in	an	RTCP	hint	track.	

Zero	or	one	ReceivedSsrcBox	 identified	with	 the	 four‐character	code	 ‘rssr’	shall	be	present	 in	 the	
additionaldata	of	a	sample	descriptor	entry	of	a	RTP	reception	hint	track:	

class ReceivedSsrcBox extends Box(‘rssr’) {
 unsigned int(32) SSRC
}

The	SSRC	value	must	equal	the	SSRC	value	in	the	header	of	all	recorded	SRTP	packets	described	by	the	
sample	description.	

9.4.1.3 Sample Format

The	sample	 format	of	RTP	reception	hint	 tracks	 is	 identical	 to	 the	syntax	of	 the	sample	 format	of	 the	
RTP	server	hint	tracks.	Each	sample	 in	the	reception	hint	track	represents	one	or	more	received	RTP	
packets.	If	media	frames	are	not	both	fragmented	and	interleaved	in	an	RTP	stream,	it	is	recommended	
that	 each	 sample	 represents	 all	 received	 RTP	 packets	 that	 have	 the	 same	 RTP	 timestamp,	 i.e.,	
consecutive	packets	in	RTP	sequence	number	order	with	a	common	RTP	timestamp.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 137

	

Each	RTP	reception	hint	 sample	contains	 two	areas:	 the	 instructions	 to	compose	 the	packet,	 and	any	
extra	data	needed	for	composing	the	packet,	such	as	a	copy	of	the	packet	payload.	Note	that	the	size	of	
the	sample	is	known	from	the	sample	size	table.	

Since	 the	 reception	 time	 for	 the	 packets	may	 vary,	 this	 variation	 can	be	 signalled	 for	 each	packet	 as	
specified	subsequently.	

A	sample	with	a	size	of	zero	is	permitted	in	reception	hint	tracks,	and	such	samples	may	be	ignored.	

9.4.1.4 Packet Entry Format

Each	packet	 in	 the	packet	 entry	 table	has	 same	 structure	 as	 for	 server	 (transmission)	hint	 tracks,	 in	
9.1.3.1.	

Where	i	is	the	sample	number	of	a	sample,	the	sum	of	the	sample	time	DT(i)	as	specified	in	8.6.1.2	and	
relative_time	 indicates	the	reception	time	of	the	packet.	The	clock	source	for	the	reception	time	is	
undefined	and	may	be,	 for	 instance,	 the	wall	clock	of	the	receiver.	 If	 the	range	of	reception	times	of	a	
reception	hint	track	overlaps	entirely	or	partly	with	the	range	of	reception	times	of	another	reception	
hint	track,	the	clock	sources	for	these	hint	tracks	shall	be	the	same.	

It	is	recommended	that	receivers	may	use	a	constant	value	for	sample_delta	in	the	decoding	time	to	
sample	 box	 ('stts')	 as	 much	 as	 reasonable	 and	 smooth	 out	 packet	 scheduling	 and	 end‐to‐end	 delay	
variation	by	setting	relative_time	adaptively	in	stored	reception	hint	samples.	This	arrangement	of	
setting	 the	 values	 of	 sample_delta	 and	 relative_time	 can	 facilitate	 a	 compact	 decoding	 time	 to	
sample	box.	In	this	case	timestamp_sync	is	set	to	1,	the	sample	durations	are	mostly	constant,	and	the	
time	offset	(‘tsro’)	is	stored	in	the	sample	entry.	

The	 values	 of	 RTP_version,	 P_bit,	 X_bit,	 CSRC_count,	 M_bit,	 payload_type,	 and	
RTPsequenceseed	shall	be	set	equal	 to	the	V,	P,	X,	CC,	M,	PT	and	sequence	number	 fields	of	 the	RTP	
packet	captured	in	the	sample.	

The	fields	bframe_flag	and	repeat_flag	are	reserved	in	reception	hint	tracks	and	must	be	zero.	

The	semantics	of extra_flag	and	extra_information_length	are	identical	to	those	of	specified	for	
the	RTP	server	hint	tracks.	

The	following	TLV	boxes	are	specified:	rtphdrextTLV,	rtpoffsetTLV, receivedCSRC.	

If	 the	X_bit	 is	 set	 a	 single	rtphdrextTLV	 box	 shall	 be	present	 for	 storing	 the	 received	RTP	Header	
Extension.	

aligned(8) class rtphdrextTLV extends Box(‘rtpx’) {
 unsigned int(8) data[];
}

data	is	the	raw	RTP	Header	Extension	which	is	application‐specific.	

The	syntax	of	the	rtpoffsetTLV	box	is	specified	in	9.1.3.1.	

offset	indicates	a	32‐bit	signed	integer	offset	to	the	RTP	timestamp	of	the	received	RTP	packet.	Let	i	
be	 the	 sample	number	of	 a	 sample,	DT(i)	be	equal	 to	DT	as	 specified	 in	8.6.1.2	 for	 sample	number	 i,	

ISO/IEC 14496-12:2015(E)

138	 ©	ISO/IEC	2015	–	All	rights	reserved

	

tsro.offset	be	the	value	of	offset	in	the	'tsro'	box	of	the	referred	reception	hint	sample	entry,	and	%	
be	the	modulo	operation.	The	value	of	offset	shall	be	such	that	the	following	Formula	is	true:	

RTPtimestamp (DTi  tsro.offset  offset)mod232

formula	(1)	RTP	timestamp	calculation	

NOTE	1:	 When	 each	 reception	 hint	 sample	 represents	 all	 received	 RTP	 packets	 that	 have	 the	 same	 RTP	
timestamp,	the	value	of	sample_delta	in	the	decoding	time	to	sample	box	can	be	set	to	match	the	
RTP	 timestamp.	 In	other	words,	DT(i),	 as	 specified	 above,	 can	be	 set	 equal	 to	 (the	RTP	 timestamp	–	
tsro.offset	–	offset)	(assuming	that	the	resulting	value	would	be	greater	than	or	equal	to	0).	
This	is	recommended.	

NOTE	2:	 RTP	timestamps	do	not	necessarily	increase	as	a	function	of	RTP	sequence	number	in	all	RTP	streams,	
i.e.,	 transmission	order	and	playback	order	of	packets	may	not	be	 identical.	For	example,	many	video	
coding	 schemes	 allow	 bi‐prediction	 from	 previous	 and	 succeeding	 pictures	 in	 playback	 order.	 As	
samples	appear	in	tracks	in	their	decoding	order,	i.e.,	in	reception	order	in	case	of	RTP	reception	hint	
tracks,	offset	in	the	rtpoffsetTLV	box	can	be	used	to	warp	the	RTP	timestamp	away	from	the	
sample	time	DT(i).	

For	the	purpose	of	edits	in	Edit	List	Boxes,	the	composition	time	of	a	received	RTP	packet	is	inferred	to	
be	the	sum	of	the	sample	time	DT(i)	and	offset	as	specified	above.	

If	the	value	of	CSRC_count	is	not	equal	to	zero,	a	receivedCSRC	box	may	be	present	for	storing	the	
received	CSRC	header	fields	for	each	RTP	packet.	The	receivedCSRC	box	is	identified	with	the	four‐
character	code	‘rcsr’	

aligned(8) class receivedCSRC extends Box('rcsr') {
 unsigned int(32) CSRC[]; //to end of the box
}

The	 number	 of	 entries	 in	 CSRC[]	 equals	 the	 CC	 value	 of	 received	 SRTP	 packets.	 The	 nth	 entry	 of	
CSRC[]	shall	equal	the	nth	CSRC	value	of	the	RTP	packet	header.	

9.4.1.5 SDP information

Both	movie	and	track	SDP	information	may	be	present,	as	specified	in	9.1.4.	

9.4.2 RTCP Reception Hint Track

9.4.2.1 Introduction

This	 Subclause	 specifies	 the	 reception	 hint	 track	 format	 for	 the	 real‐time	 control	 protocol	 (RTCP),	
defined	in	IETF	RFC	3550.	

RTCP	 is	 used	 for	 real‐time	 transport	 of	 control	 information	 for	 an	 RTP	 session	 over	 the	 Internet	
Protocol.	During	streaming,	each	RTP	stream	typically	has	an	accompanying	RTCP	stream	that	carries	
control	information	for	the	RTP	stream.	One	RTCP	reception	hint	track	carries	one	RTCP	stream	and	is	
associated	to	the	corresponding	RTP	reception	hint	track	through	a	track	reference.	

The	 format	 of	 the	RTCP	 reception	hint	 tracks	 allows	 the	 storage	of	RTCP	Sender	Reports	 in	 the	 hint	
samples.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 139

	

The	 RTCP	 Sender	 Reports	 are	 of	 particular	 interest	 for	 stream	 recording,	 because	 they	 reflect	 the	
current	status	of	 the	server,	e.g.,	 the	relationship	of	 the	media	timing	(RTP	timestamp	of	audio/video	
packets)	 to	 the	 server	 time	 (absolute	 time	 in	 NTP	 format).	 Knowledge	 of	 this	 relationship	 is	 also	
necessary	for	playback	of	recorded	RTP	reception	hint	tracks	to	be	able	to	detect	and	correct	clock	drift	
and	jitter.	

The	timestamp	synchrony	box	as	specified	in	9.4.1.2	makes	 it	possible	to	correct	clock	drift	and	 jitter	
before	playing	a	file,	and	therefore	recording	of	RTCP	streams	is	optional	when	timestamp_sync	is	equal	
to	2.	

There	 is	 no	 server	hint	 track	 equivalent	 for	 the	RTCP	 reception	hint	 track,	 since	RTCP	messages	 are	
generated	on‐the‐fly	during	transmission.	

9.4.2.2 General

There	 shall	 be	 zero	 or	 one	 RTCP	 reception	 hint	 track	 for	 each	 RTP	 reception	 hint	 track.	 An	 RTCP	
reception	 hint	 track	 shall	 contain	 a	 track	 reference	 box	 including	 a	 reference	 of	 type	 'cdsc'	 to	 the	
associated	RTP	reception	hint	track.	

When	 i	 is	 the	 sample	number	of	 a	 sample,	 the	 sample	 time	DT(i)	 as	 specified	 in	8.6.1.2	 indicates	 the	
reception	 time	 of	 the	 packet.	 The	 clock	 source	 for	 the	 reception	 time	 shall	 be	 the	 same	 as	 for	 the	
associated	 RTP	 reception	 hint	 track.	 The	 value	 of	 timescale	 in	 the	 Media	 Header	 Box	 of	 an	 RTCP	
reception	hint	track	shall	be	equal	to	the	value	of	timescale	in	the	media	header	box	of	the	associated	
RTP	reception	hint	track.	

9.4.2.3 Sample Description Format

The	entry‐format	in	the	sample	description	for	the	RTCP	reception	hint	tracks	is	 'rtcp'.	It	is	otherwise	
identical	 in	 structure	 to	 the	 sample	 entry	 format	 for	 RTP.	 There	 are	 no	 defined	 boxes	 for	 the	
additionaldata	field.	

9.4.2.4 Sample Format

9.4.2.4.1 Introduction

Each	sample	 in	 the	reception	hint	 track	represents	one	or	more	received	RTCP	packets.	Each	sample	
contains	two	areas:	the	raw	RTCP	packets	and	any	extra	data	needed.	Note	that	the	size	of	the	sample	is	
known	from	the	sample	size	 table,	and	that	 the	size	of	an	RTCP	packet	 is	 indicated	within	 the	packet	
itself	(as	documented	in	RFC	3550),	as	a	count	one	less	than	the	number	of	32‐bit	words	in	that	packet.	

9.4.2.4.2 Syntax

aligned(8) class receivedRTCPpacket {
 unsigned int(8) data[];
}

aligned(8) class receivedRTCPsample {
 unsigned int(16) packetcount;
 unsigned int(16) reserved;
 receivedRTCPpacket packets[packetcount];
}

ISO/IEC 14496-12:2015(E)

140	 ©	ISO/IEC	2015	–	All	rights	reserved

	

9.4.2.4.3 Semantics

data	contains	a	raw	RTCP	packet	including	the	RTCP	report	header,	the	20‐byte	sender	information	
block	 and	 any	 number	 of	 report	 blocks.	Note	 that	 the	 size	 of	 each	RTCP	packet	 is	 known	by	
parsing	the	16‐bit	length	field	of	the	RTCP	header.	

packetcount	indicates	the	number	of	received	RTCP	packets	contained	in	the	sample.	
packets	contains	the	received	RTCP	packets.	

9.4.3 SRTP Reception Hint Track

9.4.3.1 Introduction

This	 Subclause	 specifies	 the	 reception	 hint	 track	 formats	 for	 the	 secure	 real‐time	 transport	 protocol	
(SRTP),	as	defined	in	IETF	RFC	3711.	

SRTP	 is	 a	 secure	 extension	 of	 the	 real‐time	media	 transport	 (RTP)	 over	 the	 Internet	 Protocol.	 Each	
SRTP	 stream	 carries	 one	 media	 type,	 and	 one	 SRTP	 reception	 hint	 track	 carries	 one	 SRTP	 stream.	
Hence,	recording	of	an	audio‐visual	program	results	into	at	least	two	SRTP	reception	hint	tracks.	

The	design	of	the	SRTP	reception	hint	track	format	follows	the	design	of	RTP	reception	hint	tracks	and	
reuses	most	 of	 the	 framework	provided	by	RTP	 reception	hint	 tracks.	The	major	difference	 between	
RTP	and	SRTP	reception	hint	tracks	is	that	the	actual	media	payload	is	stored	in	an	encrypted	form	for	
SRTP	 reception	hint	 tracks,	whereas	 it	 is	 unencrypted	 for	RTP	 reception	hint	 tracks.	 SRTP	 reception	
hint	 tracks	 provide	 additional	 boxes	 to	 store	 information	necessary	 to	decrypt	 encrypted	 content	 on	
playback.	Additionally,	all	header	fields	of	the	SRTP	packet	header	shall	be	stored	with	the	payload,	as	
this	information	is	necessary	to	check	the	integrity	of	the	received	data.	SRTP	reception	hint	tracks	are	
commonly	used	together	with	SRTCP	reception	hint	tracks.	

SRTP	reception	hint	tracks	may,	for	example,	be	used	to	store	protected	mobile	TV	content.	

9.4.3.2 Sample Description Format

9.4.3.2.1 Sample Description Entry

The	sample	description	format	for	SRTP	reception	hint	tracks	is	identical	to	that	for	RTP	reception	hint	
tracks	with	 the	exception	 that	 the	sample	entry	name	 is	changed	 from	 ‘rrtp’	 to	 ‘rsrp’	and	 that	 it	may	
contain	additional	boxes:	

class ReceivedSrtpHintSampleEntry() extends SampleEntry (‘rsrp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

Fields	 and	 boxes	 are	 identical	 to	 those	 of	 the	 ReceivedRtpHintSampleEntry	 (‘rrtp‘).	 The	
addtionaldata[]	 of	 each	 sample	 description	 entry	 of	 a	 SRTP	Reception	Hint	 Track	 shall	 contain	
exactly	one	ReceivedSsrc	Box	(‘rssr’).	

Additionally,	 the	 additionaldata[]	 may	 contain	 the	 Received	 Cryptographic	 Context	 ID	 box	 and	 the	
Rollover	Counter	box	defined	below.	Furthermore,	a	SRTP	Process	Box	shall	also	be	included	as	one	of	
the	 additionaldata	 boxes.	 As	 the	 content	 is	 stored	 encrypted,	 the	 integrity	 and	 the	 encryption	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 141

	

algorithm	fields	in	the	SRTP	Process	box	specify	the	algorithm	that	was	applied	to	the	received	stream.	
An	entry	of	four	spaces	($20$20$20$20)	may	be	used	to	indicate	that	the	algorithm	is	defined	by	means	
outside	the	scope	of	this	document.	

9.4.3.2.2 Received Cryptographic Context ID Box

Zero	or	one	ReceivedCryptoContextIdBox,	identified	with	the	four‐character	code	‘ccid’,	may	be	
present	 in	 the	 additionaldata	 of	 a	 sample	 descriptor	 entry	 of	 an	 SRTP	 reception	 hint	 track.	
Information	to	recover	the	cryptographic	context	for	the	received	SRTP	stream	may	be	stored	here.	

aligned(8) class ReceivedCryptoContextIdBox extends Box (‘ccid’) {
 unsigned int(16) destPort;
 unsigned int(8) ip_version;
 switch (ip_version) {
 case 4: // IPv4
 unsigned int(32) destIP;
 break;
 case 6: // IPv6
 unsigned int(64) destIP;
 break;
 }
}

The	destPort	and	destIP	parameters	contain	the	port	number	and	the	IP	address	(as	present	in	the	
received	IPv4	or	IPv6	packages),	respectively,	of	the	SRTP	session	via	which	the	recorded	SRTP	packets	
were	received.	ip_version	contains	either	4	or	6	representing	IPv4	or	IPv6,	respectively.	

9.4.3.2.3 Rollover Counter Box

Zero	or	one	RolloverCounterBox,	identified	with	the	four‐character	code	‘sroc’,	may	be	present	in	
the	additionaldata	 of	 a	 sample	 descriptor	 entry	 of	 an	 SRTP	 reception	 hint	 track.	 Typically,	 the	
rollover	counter	value	changes	every	65536	SRTP	package.	

aligned(8) class RolloverCounterBox extends Box (‘sroc’) {
 unsigned int(32) rollover_counter;
 }

The	rollover_counter	is	a	non‐zero	integer	that	gives	the	value	of	the	ROC	field	for	all	associated	
received	SRTP	packets.	

NOTE:	The	rollover	counter	(ROC)	is	an	element	of	the	cryptographic	context	of	a	SRTP	stream	and	depends	on	
the	absolute	position	of	a	packet	in	an	RTP	stream.	Knowledge	of	the	ROC	value	is	necessary	in	order	to	decrypt	a	
received	 SRTP	 packet.	 It	 is	 optional	 to	 use	 the	 rollover	 counter	 box	 as	 RFC	 4771	 defines	 as	 an	 optional	
mechanism	to	signal	the	ROC	value	explicitly	in	the	authentication	tag	of	a	SRTP	package.	

9.4.3.3 Sample and Packet Entry Format

Both,	 sample	 format	and	packet	Entry	 format	 for	SRTP	reception	hint	 tracks	are	 identical	 to	 those	of	
RTP	reception	hint	tracks,	defined	in	9.4.1.3	and	9.4.1.4.	The	packet	payload	is	stored	as	received	in	the	
SRTP	packets,	i.e.,	all	information	received	in	the	SRTP	packet	excluding	the	header	or,	in	other	words,	
the	encrypted	payload	together	with	the	key	identifier	(MKI)	and	the	authentication	tag.	

If	 the	value	of	CSRC_count	 is	not	equal	 to	 zero	 for	a	 received	SRTP	packet,	 the	extra_data_tlv	
corresponding	 to	 this	 receivedSRTPpacket	 shall	 contain	 exactly	 one	 receivedCSRC	 box	
(‘rcsr’).	

ISO/IEC 14496-12:2015(E)

142	 ©	ISO/IEC	2015	–	All	rights	reserved

	

9.4.4 SRTCP Reception Hint Tracks

9.4.4.1 Introduction

This	 Subclause	 specifies	 the	 reception	 hint	 track	 format	 for	 the	 secure	 real‐time	 control	 protocol	
(SRTCP),	defined	in	IETF	RFC	3711.	

SRTCP	 is	 used	 for	 real‐time	 transport	 of	 control	 information	 for	 a	 SRTP	 session	 over	 the	 Internet	
Protocol.	SRTCP	takes	for	SRTP	the	role	that	RTCP	takes	for	RTP,	cf.,	9.4.2.	During	streaming,	each	SRTP	
stream	 typically	 has	 an	 accompanying	 SRTCP	 stream	 that	 carries	 control	 information	 for	 the	 SRTP	
stream.	 One	 SRTCP	 reception	 hint	 track	 carries	 one	 SRTCP	 stream	 and	 is	 associated	 to	 the	
corresponding	SRTP	reception	hint	track	through	a	track	reference.	

The	format	of	the	SRTCP	reception	hint	tracks	allows	the	storage	of	SRTCP	Packets	in	the	hint	samples,	
e.g.,	of	SRTCP	Sender	Reports.	

The	 SRTCP	 Sender	 Reports	 are	 of	 particular	 interest	 for	 stream	 recording,	 because	 they	 reflect	 the	
current	status	of	the	server,	e.g.,	the	relationship	of	the	media	timing	(SRTP	timestamp	of	audio/video	
packets)	 to	 the	 server	 time	 (absolute	 time	 in	 NTP	 format).	 Knowledge	 of	 this	 relationship	 is	 also	
necessary	for	playback	of	recorded	SRTP	reception	hint	tracks	in	order	to	be	able	to	detect	and	correct	
clock	drift	and	jitter.	

The	timestamp	synchrony	box	as	specified	in	9.4.1.2	makes	 it	possible	to	correct	clock	drift	and	 jitter	
before	playing	a	file,	and	therefore	recording	of	SRTCP	streams	is	optional.	

There	is	no	server	hint	track	equivalent	for	the	SRCTP	reception	hint	track,	since	SRTCP	messages	are	
generated	on‐the‐fly	during	transmission.	

9.4.4.2 General

There	shall	be	zero	or	one	SRTCP	reception	hint	 track	 for	each	SRTP	reception	hint	 track.	An	SRTCP	
reception	 hint	 track	 shall	 contain	 a	 track	 reference	 box	 including	 a	 reference	 of	 type	 'cdsc'	 to	 the	
associated	SRTP	reception	hint	track.	

When	 i	 is	 the	 sample	 number	 a	 sample,	 the	 sample	 time	 DT(i)	 as	 specified	 in	 8.6.1.2	 indicates	 the	
reception	 time	 of	 the	 packet.	 The	 clock	 source	 for	 the	 reception	 time	 shall	 be	 the	 same	 as	 for	 the	
associated	SRTP	reception	hint	 track.	The	value	of	timescale	 in	 the	Media	Header	Box	of	 an	SRTCP	
reception	hint	track	shall	be	equal	to	the	value	of	timescale	in	the	media	header	box	of	the	associated	
SRTP	reception	hint	track.	

9.4.4.3 Sample Description Format

The	entry‐format	in	the	sample	description	for	the	SRTCP	reception	hint	tracks	is	'stcp'.	It	is	otherwise	
identical	in	structure	to	the	sample	entry	format	for	RTCP.	The	encryption	and	authentication	method	
of	the	SRTCP	hint	tracks	are	defined	by	the	respective	entries	in	SRTP	Process	box	of	the	corresponding	
SRTP	hint	track.	

NOTE:	 An	 equivalent	 to	 the	 ROC	 boxes	 defined	 for	 SRTP	 is	 not	 necessary	 for	 SRTCP,	 as	 the	 SRTCP	 packet	
contains	an	explicitly	signalled	initialization	vector.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 143

	

9.4.4.4 Sample Format

Sample	format	is	the	sample	format	for	RTCP	reception	hint	tracks	as	defined	in	9.4.2.4.	

9.4.5 Protected RTP Reception Hint Track

9.4.5.1 Introduction

This	 specification	 defines	 a	 mechanism	 for	 marking	 media	 streams	 as	 protected.	 This	 works	 by	
changing	the	four	character	code	of	 the	SampleEntry,	and	appending	boxes	containing	both	details	of	
the	protection	mechanism	and	the	original	 four	character	code.	However,	 in	this	case	the	track	 is	not	
protected;	it	is	an	 ‘in	the	clear’	hint	track	which	contains	protected	data.	This	Subclause	describes	the	
how	reception	hint	tracks	should	be	marked	as	carrying	protected	data,	using	a	similar	mechanism,	and	
utilizing	the	same	boxes.	

9.4.5.2 Syntax

Class ProtectedRtpReceptionHintSampleEntry
 extends RtpReceptionHintSampleEntry (‘prtp‘) {
 ProtectionSchemeInfoBox SchemeInformation;
}

9.4.5.3 Semantics

The	SchemeInformation	(‘sinf‘)	box	shall	contain	details	of	the	protection	scheme	applied.	This	shall	
include	the	OriginalFormatBox	which	shall	contain	the	four	character	code	’rrtp‘	(the	four	character	
code	of	the	original	RTPReceptionHintSampleEntry	box).	

9.4.6 Recording Procedure

See	Annex	H.	

9.4.7 Parsing Procedure

See	Annex	H.	

10 Sample Groups

10.1 Random Access Recovery Points

10.1.1.1 Definition

In	some	coding	systems	it	is	possible	to	random	access	into	a	stream	and	achieve	correct	decoding	after	
having	decoded	a	number	of	samples.	This	is	known	as	gradual	decoding	refresh.	For	example,	in	video,	
the	 encoder	 might	 encode	 intra‐coded	macroblocks	 in	 the	 stream,	 such	 that	 it	 knows	 that	 within	 a	
certain	period	the	entire	picture	consists	of	pixels	that	are	only	dependent	on	intra‐coded	macroblocks	
supplied	during	that	period.	

Samples	 for	 which	 such	 gradual	 refresh	 is	 possible	 are	marked	 by	 being	 a	member	 of	 one	 of	 these	
groups.	The	definition	of	the	groups	allows	the	marking	to	occur	at	either	the	beginning	of	the	period	or	
the	end.	However,	when	used	with	a	particular	media	type,	the	usage	of	these	groups	may	be	restricted	
to	marking	only	one	end	(i.e.	restricted	to	only	positive	or	negative	roll	values).	A	roll‐group	is	defined	
as	that	group	of	samples	having	the	same	roll	distance.	

ISO/IEC 14496-12:2015(E)

144	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	roll	groups	have	the	following	semantics.	

A	VisualRollRecoveryEntry	 documents	 samples	 that	 enable	 entry	 points	 into	 streams	 that	 are	
alternatives	to	sync	samples.	

An	AudioRollRecoveryEntry	documents	the	pre‐roll	distance	required	in	audio	streams	in	which	
every	sample	can	be	independently	decoded,	but	the	decoder	output	is	only	assured	to	be	correct	after	
pre‐rolling	by	the	indicated	number	of	samples.	

An	AudioPreRollEntry	 is	 used	with	 audio	 streams	 in	which	 not	 every	 sample	 is	 a	 sync	 sample;	
decoding	can	only	start	 at	 a	 sync	sample,	but	decoder	output	 is	only	assured	 to	be	correct	after	pre‐
rolling	by	the	indicated	number	of	samples.	This	means	that	to	achieve	correct	output	when	performing	
random	access,	 first	 it	 is	necessary	 to	back	up	by	 the	 indicated	pre‐roll	distance,	and	 then	(to	enable	
decoding	to	start)	find	the	nearest	sync	sample	at,	or	preceding,	that	position.	

10.1.1.2 Syntax

class VisualRollRecoveryEntry() extends VisualSampleGroupEntry (’roll’)
{
 signed int(16) roll_distance;
}

class AudioRollRecoveryEntry() extends AudioSampleGroupEntry (’roll’)
{
 signed int(16) roll_distance;
}

class AudioPreRollEntry() extends AudioSampleGroupEntry (’prol’)
{
 signed int(16) roll_distance;
}

10.1.1.3 Semantics

roll_distance	 is	 a	 signed	 integer	 that	 gives	 the	 number	 of	 samples	 that	must	 be	 decoded	 in	
order	 for	a	 sample	 to	be	decoded	correctly.	A	positive	value	 indicates	 the	number	of	 samples	
after	 the	 sample	 that	 is	 a	 group	member	 that	must	 be	 decoded	 such	 that	 at	 the	 last	 of	 these	
recovery	 is	 complete,	 i.e.	 the	 last	 sample	 is	 correct.	A	negative	 value	 indicates	 the	number	of	
samples	before	the	sample	that	is	a	group	member	that	must	be	decoded	in	order	for	recovery	
to	be	complete	at	the	marked	sample.	The	value	zero	must	not	be	used;	the	sync	sample	table	
documents	random	access	points	for	which	no	recovery	roll	is	needed.	

10.2 Rate Share Groups

10.2.1 Introduction

Rate	 share	 instructions	 are	 used	 by	 players	 and	 streaming	 servers	 to	 help	 allocating	 bitrates	
dynamically	when	several	streams	share	a	common	bandwidth	resource.	The	instructions	are	stored	in	
the	 file	 as	 sample	 group	 entries	 and	 apply	 when	 scalable	 or	 alternative	 media	 streams	 at	 different	
bitrates	are	combined	with	other	scalable	or	alternative	tracks.	The	instructions	are	time‐dependent	as	
samples	in	a	track	may	be	associated	with	different	sample	group	entries.	In	the	simplest	case,	only	one	
target	rate	share	value	is	specified	per	media	and	time	range	as	illustrated	in	Figure	5.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 145

	

A
/

V
 R

a
te

 S
h

ar
e

(%
)

time
Higher audio rate

required

Audio

Video

	

Figure 5 — Audio/Video rate share as function of time

In	 order	 to	 accommodate	 for	 rate	 share	 values	 that	 vary	with	 the	 available	 bitrate,	 it	 is	 possible	 to	
specify	 more	 than	 one	 operation	 range.	 One	may	 for	 instance	 indicate	 that	 audio	 requires	 a	 higher	
percentage	(than	video)	at	low	available	bitrates.	Technically	this	is	done	by	specifying	two	operation	
points	as	shown	in	Figure	6.	

A
u

d
io

 R
a

te
 S

ha
re

 (
%

)

Available bitrate

Higher audio
rate required

Lower audio
rate required

OP 1 OP 2

	

Figure 6 — Audio rate share as function of available bitrate

Operation	points	are	defined	 in	 terms	of	 total	available	bandwidth.	For	more	complex	situations	 it	 is	
possible	to	specify	more	operation	points.	

In	addition	to	target	rate	share	values,	it	is	also	possible	to	specify	maximum	and	minimum	bitrates	for	
a	certain	media,	as	well	as	discard	priority.	

ISO/IEC 14496-12:2015(E)

146	 ©	ISO/IEC	2015	–	All	rights	reserved

	

10.2.2 Rate Share Sample Group Entry

10.2.2.1 Definition

Each	sample	of	a	track	may	be	associated	to	(zero	or)	one	of	a	number	of	sample	group	descriptions,	
each	 of	which	 defines	 a	 record	 of	 rate‐share	 information.	 Typically	 the	 same	 rate‐share	 information	
applies	 to	many	 consecutive	 samples	 and	 it	may	 therefore	 be	 enough	 to	 define	 two	or	 three	 sample	
group	descriptions	that	can	be	used	at	different	time	intervals.	

The	 grouping	 type	'rash'	 (short	 for	 rate	 share)	 is	 defined	 as	 the	 grouping	 criterion	 for	 rate	 share	
information.	 Zero	 or	 one	 sample‐to‐group	 box	 ('sbgp')	 for	 the	 grouping	 type	 'rash'	 can	 be	
contained	in	the	sample	table	box	('stbl')	of	a	track.	 It	shall	reside	in	a	hint	track,	 if	a	hint	track	 is	
used,	otherwise	in	a	media	track.	

Target	 rate	 share	may	be	specified	 for	 several	operation	points	 that	are	defined	 in	 terms	of	 the	 total	
available	bitrate,	i.e.,	the	bitrate	that	should	be	shared.	If	only	one	operation	point	is	defined,	the	target	
rate	share	applies	to	all	available	bitrates.	If	several	operation	points	are	defined,	then	each	operation	
point	specifies	a	target	rate	share.	Target	rate	share	values	specified	for	the	first	and	the	last	operation	
points	also	specify	the	target	rate	share	values	at	lower	and	higher	available	bitrates,	respectively.	The	
target	rate	share	between	two	operation	points	is	specified	to	be	in	the	range	between	the	target	rate	
shares	of	those	operation	points.	One	possibility	is	to	estimate	with	linear	interpolation.	

10.2.2.2 Syntax

class RateShareEntry() extends SampleGroupDescriptionEntry('rash') {
 unsigned int(16) operation_point_count;
 if (operation_point_count == 1) {
 unsigned int(16) target_rate_share;
 }
 else {
 for (i=0; i < operation_point_count; i++) {
 unsigned int(32) available_bitrate;
 unsigned int(16) target_rate_share;
 }
 }
 unsigned int(32) maximum_bitrate;
 unsigned int(32) minimum_bitrate;
 unsigned int(8) discard_priority;
}

10.2.2.3 Semantics

operation_point_count	is	a	non‐zero	integer	that	gives	the	number	of	operation	points.	
available_bitrate	is	a	positive	integer	that	defines	an	operation	point	(in	kilobits	per	second).	

It	 is	 the	 total	 available	 bitrate	 that	 can	 be	 allocated	 in	 shares	 to	 tracks.	 Each	 entry	 shall	 be	
greater	than	the	previous	entry.	

target_rate_share	 is	 an	 integer.	 A	 non‐zero	 value	 indicates	 the	 percentage	 of	 available	
bandwidth	that	should	be	allocated	to	the	media	for	each	operation	point.	The	value	of	the	first	
(last)	operation	point	applies	to	lower	(higher)	available	bitrates	than	the	operation	point	itself.	
The	 target	 rate	 share	 between	 operation	 points	 is	 bounded	 by	 the	 target	 rate	 shares	 of	 the	
corresponding	 operation	 points.	 A	 zero	 value	 indicates	 that	 no	 information	 on	 the	 preferred	
rate	share	percentage	is	provided.	

maximum_bitrate is	 an	 integer.	 A	 nonzero	 value	 indicates	 (in	 kilobits	 per	 second)	 an	 upper	
threshold	 for	 which	 bandwidth	 should	 be	 allocated	 to	 the	 media.	 A	 higher	 bitrate	 than	
maximum	bitrate	 should	 only	 be	 allocated	 if	 all	 other	media	 in	 the	 session	 has	 fulfilled	 their	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 147

	

quotas	 for	target	rate‐share	and	maximum	bitrate,	respectively.	A	zero	value	indicates	that	no	
information	on	maximum	bitrate	is	provided.	

minimum_bitrate is	 an	 integer.	 A	 nonzero	 value	 indicates	 (in	 kilobits	 per	 second)	 a	 lower	
threshold	 for	which	 bandwidth	 should	 be	 allocated	 to	 the	media.	 If	 the	 allocated	 bandwidth	
would	 correspond	 to	 a	 smaller	 value,	 then	no	bitrate	 should	 be	 allocated.	 Instead	preference	
should	be	given	to	other	media	 in	 the	session	or	alternate	encodings	of	 the	same	media.	Zero	
minimum	bitrate	indicates	that	no	information	on	minimum	bitrate	is	provided.	

discard_priority is	an	integer	indicating	the	priority	of	the	track	when	tracks	are	discarded	
to	meet	the	constraints	set	by	target	rate	share,	maximum	bitrate	and	minimum	bitrate.	Tracks	
are	discarded	in	discard	priority	order	and	the	track	that	has	the	highest	discard	priority	value	
is	discarded	first.	

10.2.3 Relationship between tracks

The	purpose	of	defining	rate	share	information	is	to	aid	a	server	or	player	extracting	data	from	a	track	
in	combination	with	other	tracks.	Note	that	a	server/player	streams/plays	tracks	simultaneously	if	they	
belong	 to	 different	 alternate	 groups	 and	 can	 switch	 between	 tracks	 that	 belong	 to	 the	 same	 switch	
group	within	an	alternate	group.	By	default,	all	tracks	are	served/played	simultaneously	if	no	alternate	
groups	are	defined.	

Rate	 share	 information	 should	 be	 provided	 for	 each	 track.	 A	 track	 that	 does	 not	 include	 rate	 share	
information	has	one	operation	point	and	can	be	treated	as	a	constant‐bitrate	track	with	discard	priority	
128.	Target	rate	share,	minimum	and	maximum	bitrates	do	not	apply	in	this	case.	

Tracks	 that	 are	 alternates	 to	 each	 other	 shall	 (at	 each	 instance	 of	 time)	 define	 the	 same	 number	 of	
operation	points	at	 the	same	set	of	 total	available	bitrates	and	have	the	same	discard	priorities.	Note	
that	 the	 number	 and	 definition	 of	 operation	 points	may	 depend	 on	 time.	 Alternate	 tracks	may	 have	
different	target	rate	shares,	minimum	and	maximum	bitrates.	

10.2.4 Bitrate allocation

Rate	share	information	on	maximum	bitrate,	minimum	bitrate,	and	target	rate	share	can	be	combined	
for	a	track.	If	this	is	the	case,	the	target	rate	share	shall	be	applied	to	find	an	allocated	bitrate	before	the	
impact	of	the	maximum	and	minimum	bitrates	is	considered.	

When	allocating	bandwidth	to	several	tracks,	the	following	considerations	apply:	

1. In	 the	 case	all	 tracks	have	explicit	 target	 rate	 share	values	 and	 they	don’t	 sum	up	 to	100	per	
cent,	treat	them	as	weights,	i.e.,	normalize	them.	

2. The	total	allocation	shall	not	exceed	total	available	bitrate.	

3. In	 a	 choice	 between	 alternate	 tracks,	 the	 chosen	 track	 should	 be	 the	 track	 that	 causes	 the	
alternate	 group	 to	have	 an	 allocation	most	 closely	 in	 accord	with	 its	 target	 rate	 share,	 or	 the	
track	that	desires	the	highest	bitrate	that	can	be	allocated	without	discarding	other	tracks	(see	
below).	

4. Tracks	must	have	an	allocation	between	their	minimum	and	maximum	bitrates,	or	be	discarded.	

5. Tracks	 should	 have	 an	 allocation	 in	 accord	 with	 their	 target	 rate	 shares,	 but	 this	 may	 be	
distorted	 to	 allow	 some	 tracks	 to	 achieve	 their	 minima,	 or	 in	 case	 some	 have	 reached	 their	
maxima.	

6. If	an	allocation	cannot	be	done	including	a	track	from	every	alternate	group,	then	tracks	should	
be	discarded	in	discard	priority	order.	

ISO/IEC 14496-12:2015(E)

148	 ©	ISO/IEC	2015	–	All	rights	reserved

	

7. The	allocation	must	be	 re‐calculated	whenever	 the	operating	set	 for	an	active	 track	 (one	 that	
has	been	selected	from	an	alternate	group)	changes	or	the	available	bitrate	changes.	

10.3 Alternative Startup Sequences

10.3.1 Definition

An	alternative	startup	sequence	contains	a	subset	of	samples	of	a	track	within	a	certain	period	starting	
from	a	sync	sample	or	a	sample	marked	by	'rap '	sample	grouping,	which	are	collectively	referred	to	
as	 the	 initial	 sample	below.	By	decoding	 this	 subset	of	 samples,	 the	 rendering	of	 the	 samples	 can	be	
started	earlier	than	in	the	case	when	all	samples	are	decoded.	

An	'alst' sample	group	description	entry	indicates	the	number	of	samples	in	any	of	the	respective	
alternative	startup	sequences,	after	which	all	samples	should	be	processed.	

Either	 version	 0	 or	 version	 1	 of	 the	 Sample	 to	 Group	 Box	may	 be	 used	with	 the	 alternative	 startup	
sequence	 sample	 grouping.	 If	 version	 1	 of	 the	 Sample	 to	 Group	 Box	 is	 used,	
grouping_type_parameter	has	no	defined	semantics	but	the	same	algorithm	to	derive	alternative	
startup	sequences	should	be	used	consistently	for	a	particular	value	of	grouping_type_parameter.	

A	player	utilizing	alternative	startup	sequences	could	operate	as	 follows.	First,	 an	 initial	 sync	sample	
from	 which	 to	 start	 decoding	 is	 identified	 by	 using	 the	 Sync	 Sample	 Box,	 the	
sample_is_non_sync_sample	flag	for	samples	enclosed	in	track	fragments,	or	the	'rap '	sample	
grouping.	 Then,	 if	 the	 initial	 sync	 sample	 is	 associated	 to	 a	 sample	 group	 description	 entry	 of	 type	
'alst'	where	roll_count	is	greater	than	0,	the	player	can	use	the	alternative	startup	sequence.	The	
player	then	decodes	only	those	samples	that	are	mapped	to	the	alternative	startup	sequence	until	the	
number	 of	 samples	 that	 have	 been	 decoded	 is	 equal	 to	 roll_count.	 After	 that,	 all	 samples	 are	
decoded.	

10.3.2 Syntax

class AlternativeStartupEntry() extends VisualSampleGroupEntry (’alst’)
{
 unsigned int(16) roll_count;
 unsigned int(16) first_output_sample;
 for (i=1; i <= roll_count; i++)
 unsigned int(32) sample_offset[i];
 j=1;
 do { // optional, until the end of the structure
 unsigned int(16) num_output_samples[j];
 unsigned int(16) num_total_samples[j];
 j++;
 }
}

10.3.3 Semantics

roll_count	indicates	the	number	of	samples	in	the	alternative	startup	sequence.	If	roll_count	
is	equal	to	0,	the	associated	sample	does	not	belong	to	any	alternative	startup	sequence	and	the	
semantics	of	first_output_sample	are	unspecified.	The	number	of	samples	mapped	to	this	
sample	group	entry	per	one	alternative	startup	sequence	shall	be	equal	to roll_count.	

first_output_sample	 indicates	 the	 index	 of	 the	 first	 sample	 intended	 for	 output	 among	 the	
samples	 in	 the	 alternative	 startup	 sequence.	 The	 index	 of	 the	 sync	 initial	 sample	 starting	 the	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 149

	

alternative	startup	sequence	is	1,	and	the	index	is	incremented	by	1,	in	decoding	order,	per	each	
sample	in	the	alternative	startup	sequence.	

sample_offset[i]	indicates	the	decoding	time	delta	of	the	i‐th	sample	in	the	alternative	startup	
sequence	relative	to	the	regular	decoding	time	of	the	sample	derived	from	the	Decoding	Time	to	
Sample	Box	or	the	Track	Fragment	Header	Box.	The	sync	initial	sample	starting	the	alternative	
startup	sequence	is	its	first	sample.	

num_output_samples[j]	 and	 num_total_samples[j]	 indicate	 the	 sample	 output	 rate	
within	 the	 alternative	 startup	 sequence.	 The	 alternative	 startup	 sequence	 is	 divided	 into	 k	
consecutive	pieces,	where	each	piece	has	a	constant	sample	output	rate	which	is	unequal	to	that	
of	 the	 adjacent	 pieces.	 The	 first	 piece	 starts	 from	 the	 sample	 indicated	 by	
first_output_sample.	 num_output_samples[j]	 indicates	 the	 number	 of	 the	 output	
samples	 of	 the	 j‐th	 piece	 of	 the	 alternative	 startup	 sequence.	 num_total_samples[j]	
indicates	 the	 total	 number	 of	 samples,	 including	 those	 that	 are	 not	 in	 the	 alternative	 startup	
sequence,	from	the	first	sample	in	the	j‐th	piece	that	is	output	to	the	earlier	one	(in	composition	
order)	 of	 the	 sample	 that	 ends	 the	 alternative	 startup	 sequence	 and	 the	 sample	 that	
immediately	precedes	the	first	output	sample	of	the	(j+1)th	piece.	

10.3.4 Examples

Hierarchical	temporal	scalability	(e.g.,	in	AVC	and	SVC)	improves	compression	efficiency	but	increases	
the	 decoding	 delay	 due	 to	 reordering	 of	 the	 decoded	 pictures	 from	 the	 (de)coding	 order	 to	 output	
order.	Deep	temporal	hierarchies	have	been	demonstrated	to	useful	in	terms	of	compression	efficiency	
in	some	studies.	When	the	temporal	hierarchy	is	deep	and	the	operation	speed	of	the	decoder	is	limited	
(to	no	faster	than	real‐time	processing),	 the	initial	delay	from	the	start	of	the	decoding	to	the	start	of	
rendering	is	substantial	and	may	affect	the	end‐user	experience	negatively.	

Figure	7	illustrates	a	typical	hierarchically	scalable	bitstream	with	five	temporal	levels.	Figure	7a	shows	
the	example	sequence	 in	output	order.	Values	enclosed	 in	boxes	 indicate	 the	 frame_num	value	of	 the	
picture.	Values	in	italics	indicate	a	non‐reference	picture	while	the	other	pictures	are	reference	pictures.	
Figure	7b	 shows	 the	 example	 sequence	 in	 decoding	 order.	 Figure	7c	 shows	 the	 example	 sequence	 in	
output	order	when	assuming	that	the	output	timeline	coincides	with	that	of	the	decoding	timeline	and	
the	decoding	of	one	picture	lasts	one	picture	interval.	It	can	be	seen	that	playback	of	the	stream	starts	
five	picture	intervals	later	than	the	decoding	of	the	stream	started.	If	the	pictures	were	sampled	at	25	
Hz,	the	picture	interval	is	40	msec,	and	the	playback	is	delayed	by	0.2	sec.	

ISO/IEC 14496-12:2015(E)

150	 ©	ISO/IEC	2015	–	All	rights	reserved

	

	

Figure 7 — Decoded picture buffering delay of an example sequence with five temporal levels

Thanks	to	the	temporal	hierarchy,	it	is	possible	to	decode	only	a	subset	of	the	pictures	at	the	beginning	
of	the	sequence.	Consequently,	rendering	can	be	started	faster	but	the	displayed	picture	rate	is	lower	at	
the	beginning.	In	other	words,	a	player	can	make	a	trade‐off	between	the	duration	of	the	initial	startup	
delay	 and	 the	 initial	 displayed	 picture	 rate.	 Figure	8	 and	 Figure	9	 show	 two	 examples	 of	 alternative	
startup	sequences	where	a	subset	of	the	bitstream	of	Figure	7	is	decoded.	

The	 samples	 selected	 for	decoding	and	 the	decoder	output	are	presented	 in	Figure	8a	and	Figure	8b,	
respectively.	The	reference	picture	having	frame_num	equal	to	4	and	the	non‐reference	pictures	having	
frame_num	equal	 to	5	 are	not	decoded.	 In	 this	 example,	 the	 rendering	of	pictures	 starts	 four	picture	
intervals	earlier	than	in	Figure	7.	When	the	picture	rate	is	25	Hz,	the	saving	in	startup	delay	is	160	msec.	
The	saving	 in	 the	startup	delay	comes	with	 the	disadvantage	of	a	 lower	displayed	picture	rate	at	 the	
beginning	of	the	bitstream.	

	

Figure 8 — An example of an alternative startup sequence

In	 the	 example	 of	 Figure	9,	 another	 way	 of	 selecting	 the	 pictures	 for	 decoding	 is	 presented.	 The	
decoding	 of	 the	 pictures	 that	 depend	 on	 the	 picture	 with	 frame_num	 equal	 to	 3	 is	 omitted	 and	 the	
decoding	of	non‐reference	pictures	within	the	second	half	of	the	first	group	of	pictures	is	omitted	too.	
The	decoded	picture	resulting	from	the	sample	with	frame_num	equal	to	2	is	the	first	one	that	is	output.	
As	a	result,	the	output	picture	rate	of	the	first	group	of	pictures	is	half	of	normal	picture	rate,	but	the	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 151

	

display	 process	 starts	 two	 frame	 intervals	 (80	 msec	 in	 25	 Hz	 picture	 rate)	 earlier	 than	 in	 the	
conventional	solution	illustrated	in	Figure	7.	

	

Figure 9 — Another example of an alternative startup sequence

10.4 Random Access Point (RAP) Sample Grouping

10.4.1 Definition

A	sync	sample	is	specified	to	be	a	random	access	point	after	which	all	samples	in	decoding	order	can	be	
correctly	decoded.	However,	it	may	be	possible	to	encode	an	“open”	random	access	point,	after	which	
all	samples	 in	output	order	can	be	correctly	decoded,	but	some	samples	 following	the	random	access	
point	in	decoding	order	and	preceding	the	random	access	point	in	output	order	need	not	be	correctly	
decodable.	For	example,	an	intra	picture	starting	an	open	group	of	pictures	can	be	followed	in	decoding	
order	by	 (bi‐)predicted	pictures	 that	however	precede	 the	 intra	picture	 in	output	order;	 though	 they	
possibly	cannot	be	correctly	decoded	if	the	decoding	starts	from	the	intra	picture,	they	are	not	needed.	

Such	“open”	random‐access	samples	can	be	marked	by	being	a	member	of	this	group.	Samples	marked	
by	 this	group	must	be	random	access	points,	 and	may	also	be	sync	points	 (i.e.	 it	 is	not	 required	 that	
samples	marked	by	the	sync	sample	table	be	excluded).	

10.4.2 Syntax

class VisualRandomAccessEntry() extends VisualSampleGroupEntry (’rap ’)
{
 unsigned int(1) num_leading_samples_known;
 unsigned int(7) num_leading_samples;
}

10.4.3 Semantics

num_leading_samples_known equal	 to	 1	 indicates	 that	 the	 number	 of	 leading	 samples	 is	
known	for	each	sample	 in	 this	group,	and	the	number	 is	specified	by	num_leading_samples.	A	
leading	 sample	 is	 such	 a	 sample	 associated	 with	 an	 “open”	 random	 access	 point	 (RAP).	 It	
precedes	 the	 RAP	 in	 presentation	 order	 and	 immediate	 follows	 the	 RAP	 or	 another	 leading	
sample	 in	 decoding	 order,	 and	 when	 decoding	 starts	 from	 the	 RAP,	 the	 sample	 cannot	 be	
correctly	decoded.	

num_leading_samples specifies	the	number	of	leading	samples	for	each	sample	in	this	group.	
When	num_leading_samples_known	is	equal	to	0,	this	field	should	be	ignored.

ISO/IEC 14496-12:2015(E)

152	 ©	ISO/IEC	2015	–	All	rights	reserved

	

10.5 Temporal level sample grouping

10.5.1 Definition

Many	video	codecs	support	temporal	scalability	where	it	is	possible	to	extract	one	or	more	subsets	of	
frames	that	can	be	independently	decoded.	A	simple	case	is	the	extraction	of	I	 frames	for	a	bitstream	
with	a	regular	I‐frame	interval,	e.g,,	IPPPIPPP…,	where	every	4th	picture	is	an	I	frame.	Also	subsets	of	
these	 I	 frames	 can	 be	 extracted	 for	 even	 lower	 frame	 rates.	 More	 elaborate	 situations	 with	 several	
temporal	levels	can	be	constructed	using	hierarchical	B	or	P	frames.	

The	Temporal	Level	sample	grouping	('tele')	provides	a	codec‐independent	sample	grouping	that	can	
be	 used	 to	 group	 samples	 (access	 units)	 in	 a	 track	 (and	 potential	 track	 fragments)	 according	 to	
temporal	level,	where	samples	of	one	temporal	level	have	no	coding	dependencies	on	samples	of	higher	
temporal	 levels.	The	 temporal	 level	 equals	 the	 sample	group	description	 index	 (taking	values	1,	 2,	3,	
etc).	The	bitstream	containing	only	the	access	units	from	the	first	temporal	level	to	a	higher	temporal	
level	remains	conforming	to	the	coding	standard.	

A	 grouping	 according	 to	 temporal	 level	 facilitates	 easy	 extraction	 of	 temporal	 subsequences,	 for	
instance	using	the	Subsegment	Indexing	box	in	0.	

10.5.2 Syntax

class TemporalLevelEntry() extends VisualSampleGroupEntry('tele')
{
 bit(1) level_independently_decodable;
 bit(7) reserved=0;
}

10.5.3 Semantics

The	temporal	level	of	samples	in	a	sample	group	equals	to	the	sample	group	description	index.	

level_independently_decodable is	a	flag.	1	indicates	that	all	samples	of	this	level	have	no	
coding	dependencies	on	samples	of	other	levels.	0	indicates	that	no	information	is	provided.	

10.6 Stream access point sample group

10.6.1 Definition

A	stream	access	point,	as	defined	in	Annex	I,	enables	random	access	into	a	container	of	media	stream(s).	
The	 SAP	 sample	 grouping	 identifies	 samples	 (the	 first	 byte	 of	which	 is	 the	 position	 ISAU	 for	 a	 SAP	 as	
specified	in	Annex	I)	as	being	of	the	indicated	SAP	type.	

The	syntax	and	semantics	of	grouping_type_parameter	are	specified	as	follows.	

{
 unsigned int(28) target_layers;
 unsigned int(4) layer_id_method_idc;
}

target_layers	specifies	the	target	layers	for	the	indicated	SAPs	according	to	Annex	I.	The	
semantics	of	target_layers	depends	on	the	value	of	layer_id_method_idc.	When	
layer_id_method_idc	is	equal	to	0,	target_layers	is	reserved.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 153

	

layer_id_method_idc	specifies	the	semantics	of	target_layers.	layer_id_method_idc	
equal	 to	 0	 specifies	 that	 the	 target	 layers	 consist	 of	 all	 the	 layers	 represented	 by	 the	 track.	
layer_id_method_idc	not	equal	to	0	is	specified	by	derived	media	format	specifications.	

10.6.2 Syntax

class SAPEntry() extends SampleGroupDescriptionEntry('sap ')
{
 unsigned int(1) dependent_flag;
 unsigned int(3) reserved;
 unsigned int(4) SAP_type;
}

10.6.3 Semantics

reserved	shall	be	equal	to	0.	Parsers	shall	allow	and	ignore	all	values	of	reserved.	
dependent_flag	shall	be	0	for	non‐layered	media. dependent_flag equal	to	1	specifies	that	

the	reference	layers,	if	any,	for	predicting	the	target	layers	may	have	to	be	decoded	for	accessing	
a	sample	of	this	sample	group.	dependent_flag	equal	to	0	specifies	that	the	reference	layers,	
if	any,	for	predicting	the	target	layers	need	not	be	decoded	for	accessing	any	SAP	of	this	sample	
group.	

sap_type	values	equal	to	0	and	7	are	reserved;	sap_type	values	in	the	range	of	1	to	6,	inclusive,	
specify	the	SAP	type,	as	specified	in	Annex	I,	of	the	associated	samples	(for	which	the	first	byte	
of	a	sample	in	this	group	is	the	position	ISAU).	

11 Extensibility

11.1 Objects

The	normative	objects	defined	in	this	specification	are	identified	by	a	32‐bit	value,	which	is	normally	a	
set	of	four	printable	characters	from	the	ISO	8859‐1	character	set.	

To	permit	user	extension	of	the	format,	to	store	new	object	types,	and	to	permit	the	inter‐operation	of	
the	 files	 formatted	 to	 this	 specification	with	certain	distributed	computing	environments,	 there	are	 a	
type	mapping	and	a	type	extension	mechanism	that	together	form	a	pair.	

Commonly	used	in	distributed	computing	are	UUIDs	(universal	unique	identifiers),	which	are	16	bytes.	
Any	normative	type	specified	here	can	be	mapped	directly	into	the	UUID	space	by	composing	the	four	
byte	 type	 value	 with	 the	 twelve	 byte	 ISO	 reserved	 value,	 0xXXXXXXXX-0011-0010-8000-
00AA00389B71.	 The	 four	 character	 code	 replaces	 the	 XXXXXXXX	 in	 the	 preceding	 number.	 These	
types	are	identified	to	ISO	as	the	object	types	used	in	this	specification.	

User	objects	use	the	escape	type	‘uuid’.	They	are	documented	above	in	subclause	6.2.	After	the	size	
and	type	fields,	there	is	a	full	16‐byte	UUID.	

Systems	which	wish	to	treat	every	object	as	having	a	UUID	could	employ	the	following	algorithm:	

size := read_uint32();
type := read_uint32();
if (type==‘uuid’)
 then uuid := read_uuid()
 else uuid := form_uuid(type, ISO_12_bytes);

ISO/IEC 14496-12:2015(E)

154	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Similarly	 when	 linearizing	 a	 set	 of	 objects	 into	 files	 formatted	 to	 this	 specification,	 the	 following	 is	
applied:	

write_uint32(object_size(object));
uuid := object_uuid_type(object);
if (is_ISO_uuid(uuid))
 write_uint32(ISO_type_of(uuid))
 else { write_uint32(‘uuid’); write_uuid(uuid); }

A	file	containing	boxes	from	this	specification	that	have	been	written	using	the	‘uuid’	escape	and	the	
full	 UUID	 is	 not	 compliant;	 systems	 are	 not	 required	 to	 recognize	 standard	 boxes	written	 using	 the	
‘uuid’		and	an	ISO	UUID.	

11.2 Storage formats

The	main	file	containing	the	metadata	may	use	other	files	to	contain	media‐data.	These	other	files	may	
contain	header	declarations	from	a	variety	of	standards,	including	this	one.	

If	 such	 a	 secondary	 file	 has	 a	metadata	 declaration	 set	 in	 it,	 that	metadata	 is	 not	 part	 of	 the	 overall	
presentation.	This	allows	small	presentation	files	to	be	aggregated	into	a	larger	overall	presentation	by	
building	new	metadata	and	referencing	the	media‐data,	rather	than	copying	it.	

The	references	into	these	other	files	need	not	use	all	the	data	in	those	files;	in	this	way,	a	subset	of	the	
media‐data	may	be	used,	or	unwanted	headers	ignored.	

11.3 Derived File formats

This	 specification	may	 be	 used	 as	 the	 basis	 as	 the	 specific	 file	 format	 for	 a	 restricted	 purpose:	 	 for	
example,	the	MP4	file	format	for	MPEG‐4	and	the	Motion	JPEG	2000	file	format	are	both	derived	from	it.	
When	a	derived	specification	is	written,	the	following	must	be	specified:	

The	name	of	the	new	format,	and	its	brand	and	compatibility	types	for	the	File	Type	Box.	Generally	a	
new	file	extension	will	be	used,	a	new	MIME	type,	and	Macintosh	 file	 type	also,	 though	the	definition	
and	registration	of	these	are	outside	the	scope	of	this	specification.	

Any	 template	 fields	 used	 must	 be	 explicitly	 declared;	 their	 use	 must	 be	 conformant	 with	 the	
specification	here.	

The	 exact	 ‘codingname’	 and	 ‘protocol’	 identifiers	 as	 used	 in	 the	 Sample	 Description	 must	 be	
defined.	The	 format	of	 the	 samples	 that	 these	 code‐points	 identify	must	 also	be	defined.	However,	 it	
may	be	preferable	to	fit	the	new	coding	systems	into	an	existing	framework	(e.g.	the	MPEG‐4	systems	
framework),	than	to	define	new	coding	points	at	this	level.	For	example,	a	new	audio	format	could	use	a	
new	 codingname,	 or	 could	 use	 ‘mp4a’	 and	 register	 new	 identifiers	 within	 the	 MPEG‐4	 audio	
framework.	

New	boxes	may	be	defined,	though	this	is	discouraged.	

If	the	derived	specification	needs	a	new	track	type	other	than	those	defined	here	or	registered,	then	a	
new	handler‐type	must	be	registered.	The	media	header	required	for	this	track	must	be	identified.	If	it	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 155

	

is	a	new	box,	it	must	be	defined	and	its	box	type	registered.	In	general,	it	is	expected	that	most	systems	
can	use	existing	track	types.	

Any	new	track	reference	types	should	be	registered	and	defined.	

As	defined	above,	the	Sample	Description	format	may	be	extended	with	optional	or	required	boxes.	The	
usual	syntax	for	doing	this	would	be	to	define	a	new	box	with	a	specific	name,	extending	(for	example)	
Visual	Sample	Entry,	and	containing	new	boxes.	

12 Media-specific definitions

12.1 Video media

12.1.1 Media handler

Video	media	uses	the	‘vide’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	8.4.3.	

Auxiliary	video	media	uses	the	‘auxv’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	
8.4.3.	

An	auxiliary	video	track	is	coded	the	same	as	a	video	track,	but	uses	this	different	handler	type,	and	is	
not	intended	to	be	visually	displayed	(e.g.	it	contains	depth	information,	or	other	monochrome	or	color	
two‐dimensional	 information).	 Auxiliary	 video	 tracks	 are	 usually	 linked	 to	 a	 video	 track	 by	 an	
appropriate	track	reference.	

12.1.2 Video media header

12.1.2.1 Definition

Box	Types:	 ‘vmhd’		
Container:	 Media	Information	Box	(‘minf’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	

Video	tracks	use	the	VideoMediaHeaderbox	in	the	media	information	box	as	defined	in	8.4.5.	The	video	
media	header	contains	general	presentation	 information,	 independent	of	 the	coding,	 for	video	media.	
Note	that	the	flags	field	has	the	value	1.	

12.1.2.2 Syntax

aligned(8) class VideoMediaHeaderBox
 extends FullBox(‘vmhd’, version = 0, 1) {
 template unsigned int(16) graphicsmode = 0; // copy, see below
 template unsigned int(16)[3] opcolor = {0, 0, 0};
}

12.1.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
graphicsmode specifies	a	composition	mode	for	this	video	track,	from	the	following	enumerated	

set,	which	may	be	extended	by	derived	specifications:	
copy	=	0	copy	over	the	existing	image	

opcolor is	a	set	of	3	colour	values	(red,	green,	blue)	available	for	use	by	graphics	modes	

ISO/IEC 14496-12:2015(E)

156	 ©	ISO/IEC	2015	–	All	rights	reserved

	

12.1.3 Sample entry

12.1.3.1 Definition

Video	tracks	use	VisualSampleEntry.	

In	video	tracks,	the	frame_count	field	must	be	1	unless	the	specification	for	the	media	format	explicitly	
documents	 this	 template	 field	and	permits	 larger	values.	That	specification	must	document	both	how	
the	 individual	 frames	 of	 video	 are	 found	 (their	 size	 information)	 and	 their	 timing	 established.	 That	
timing	might	be	as	 simple	as	dividing	 the	sample	duration	by	 the	 frame	count	 to	establish	 the	 frame	
duration.	

The	width	and	height	in	the	video	sample	entry	document	the	pixel	counts	that	the	codec	will	deliver;	
this	enables	the	allocation	of	buffers.	Since	these	are	counts	they	do	not	take	into	account	pixel	aspect	
ratio.	

12.1.3.2 Syntax

class VisualSampleEntry(codingname) extends SampleEntry (codingname){
 unsigned int(16) pre_defined = 0;
 const unsigned int(16) reserved = 0;
 unsigned int(32)[3] pre_defined = 0;
 unsigned int(16) width;
 unsigned int(16) height;
 template unsigned int(32) horizresolution = 0x00480000; // 72 dpi
 template unsigned int(32) vertresolution = 0x00480000; // 72 dpi
 const unsigned int(32) reserved = 0;
 template unsigned int(16) frame_count = 1;
 string[32] compressorname;
 template unsigned int(16) depth = 0x0018;
 int(16) pre_defined = -1;
 // other boxes from derived specifications
 CleanApertureBox clap; // optional
 PixelAspectRatioBox pasp; // optional
}

12.1.3.3 Semantics

resolution	fields	give	the	resolution	of	the	image	in	pixels‐per‐inch,	as	a	fixed	16.16	number	
frame_count	 indicates	 how	many	 frames	 of	 compressed	 video	 are	 stored	 in	 each	 sample.	 The	

default	is	1,	for	one	frame	per	sample;	it	may	be	more	than	1	for	multiple	frames	per	sample	
Compressorname	is	a	name,	for	informative	purposes.	It	is	formatted	in	a	fixed	32‐byte	field,	with	

the	 first	byte	set	 to	 the	number	of	bytes	 to	be	displayed,	 followed	by	 that	number	of	bytes	of	
displayable	data,	and	then	padding	to	complete	32	bytes	total	(including	the	size	byte).	The	field	
may	be	set	to	0.	

depth	takes	one	of	the	following	values	
0x0018	–	images	are	in	colour	with	no	alpha	

width and height	 are	 the	maximum	 visual	width	 and	 height	 of	 the	 stream	 described	 by	 this	
sample	description,	in	pixels	

12.1.4 Pixel Aspect Ratio and Clean Aperture

12.1.4.1 Definition

The	pixel	aspect	ratio	and	clean	aperture	of	the	video	may	be	specified	using	the	‘pasp’	and	‘clap’	
sample	entry	boxes,	respectively.	These	are	both	optional;	if	present,	they	over‐ride	the	declarations	(if	
any)	in	structures	specific	to	the	video	codec,	which	structures	should	be	examined	if	these	boxes	are	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 157

	

absent.	 For	maximum	compatibility,	 these	 boxes	 should	 follow,	 not	 precede,	 any	boxes	 defined	 in	 or	
required	by	derived	specifications.	

In	 the	 PixelAspectRatioBox,	 hSpacing	 and	 vSpacing	 have	 the	 same	 units,	 but	 those	 units	 are	
unspecified:	only	 the	ratio	matters.	hSpacing	 and	vSpacing	may	or	may	not	be	 in	 reduced	 terms,	
and	they	may	reduce	to	1/1.	Both	of	them	must	be	positive.	

They	are	defined	as	the	aspect	ratio	of	a	pixel,	 in	arbitrary	units.	 If	a	pixel	appears	H	wide	and	V	tall,	
then	hSpacing/vSpacing	 is	 equal	 to	H/V.	This	means	 that	a	 square	on	 the	display	 that	 is	n	pixels	 tall	
needs	to	be	n*vSpacing/hSpacing	pixels	wide	to	appear	square.	

NOTE	When	adjusting	pixel	aspect	ratio,	normally,	the	horizontal	dimension	of	the	video	is	scaled,	if	needed	(i.e.	
if	the	final	display	system	has	a	different	pixel	aspect	ratio	from	the	video	source).	

NOTE	It	is	recommended	that	the	original	pixels,	and	the	composed	transform,	be	carried	through	the	pipeline	as	
far	as	possible.	If	the	transformation	resulting	from	‘correcting’	pixel	aspect	ratio	to	a	square	grid,	normalizing	to	
the	track	dimensions,	composition	or	placement	(e.g.	track	and/or	movie	matrix),	and	normalizing	to	the	display	
characteristics,	 is	 a	 unity	 matrix,	 then	 no	 re‐sampling	 need	 be	 done.	 In	 particular,	 video	 should	 not	 be	 re‐
sampled	more	than	once	in	the	process	of	rendering,	if	at	all	possible.	

There	 are	 notionally	 four	 values	 in	 the	 CleanApertureBox.	 These	 parameters	 are	 represented	 as	 a	
fraction	N/D.	The	fraction	may	or	may	not	be	in	reduced	terms.	We	refer	to	the	pair	of	parameters	fooN	
and	fooD	as	foo.	For	horizOff and	vertOff,	D	must	be	positive	and	N	may	be	positive	or	negative.	
For	cleanApertureWidth and	cleanApertureHeight,	both	N	and	D	must	be	positive.	

NOTE	These	are	fractional	numbers	for	several	reasons.	First,	in	some	systems	the	exact	width	after	pixel	aspect	
ratio	 correction	 is	 integral,	 not	 the	 pixel	 count	 before	 that	 correction.	 Second,	 if	 video	 is	 resized	 in	 the	 full	
aperture,	 the	exact	 expression	 for	 the	 clean	aperture	may	not	be	 integral.	Finally,	because	 this	 is	 represented	
using	centre	and	offset,	a	division	by	two	is	needed,	and	so	half‐values	can	occur.	

Considering	 the	 pixel	 dimensions	 as	 defined	 by	 the	 VisualSampleEntry	 width	 and	 height.	 If	 picture	
centre	of	the	image	is	at	pcX	and	pcY,	then	horizOff	and	vertOff	are	defined	as	follows:	

pcX = horizOff + (width - 1)/2
pcY = vertOff + (height - 1)/2;

Typically,	horizOff	and	vertOff	are	zero,	so	the	image	is	centred	about	the	picture	centre.	

The	leftmost/rightmost	pixel	and	the	topmost/bottommost	line	of	the	clean	aperture	fall	at:	

pcX ± (cleanApertureWidth - 1)/2
pcY ± (cleanApertureHeight - 1)/2;

12.1.4.2 Syntax

class PixelAspectRatioBox extends Box(‘pasp’){
 unsigned int(32) hSpacing;
 unsigned int(32) vSpacing;
}

ISO/IEC 14496-12:2015(E)

158	 ©	ISO/IEC	2015	–	All	rights	reserved

	

class CleanApertureBox extends Box(‘clap’){
 unsigned int(32) cleanApertureWidthN;
 unsigned int(32) cleanApertureWidthD;

 unsigned int(32) cleanApertureHeightN;
 unsigned int(32) cleanApertureHeightD;

 unsigned int(32) horizOffN;
 unsigned int(32) horizOffD;

 unsigned int(32) vertOffN;
 unsigned int(32) vertOffD;

}

12.1.4.3 Semantics

hSpacing,	vSpacing:		define	the	relative	width	and	height	of	a	pixel;	
cleanApertureWidthN,	cleanApertureWidthD:		a	fractional	number	which	defines	the	exact	

clean	aperture	width,	in	counted	pixels,	of	the	video	image	
cleanApertureHeightN,	 cleanApertureHeightD:	 a	 fractional	 number	 which	 defines	 the	

exact	clean	aperture	height,	in	counted	pixels,	of	the	video	image	
horizOffN, horizOffD:	 	 a	 fractional	 number	 which	 defines	 the	 horizontal	 offset	 of	 clean	

aperture	centre	minus	(width‐1)/2.	Typically	0.	
vertOffN,	 vertOffD:	 a	 fractional	 number	 which	 defines	 the	 vertical	 offset	 of	 clean	 aperture	

centre	minus	(height‐1)/2.	Typically	0.	

12.1.5 Colour information

12.1.5.1 Definition

Colour	 information	 may	 be	 supplied	 in	 one	 or	 more	 ColourInformationBoxes	 placed	 in	 a	
VisualSampleEntry.	These	should	be	placed	in	order	in	the	sample	entry	starting	with	the	most	accurate	
(and	 potentially	 the	 most	 difficult	 to	 process),	 in	 progression	 to	 the	 least.	 These	 are	 advisory	 and	
concern	rendering	and	colour	conversion,	and	there	is	no	normative	behaviour	associated	with	them;	a	
reader	may	choose	to	use	the	most	suitable.	A	ColourInformationBox	with	an	unknown	colour	type	may	
be	ignored.	

If	 used,	 an	 ICC	 profile	 may	 be	 a	 restricted	 one,	 under	 the	 code	 ‘rICC’,	 which	 permits	 simpler	
processing.	That	profile	shall	be	of	either	the	Monochrome	or	Three‐Component	Matrix‐Based	class	of	
input	profiles,	as	defined	by	ISO	15076‐1.	If	the	profile	is	of	another	class,	then	the	‘prof’	 indicator	
must	be	used.	

If	 colour	 information	 is	 supplied	 in	 both	 this	 box,	 and	 also	 in	 the	 video	 bitstream,	 this	 box	 takes	
precedence,	and	over‐rides	the	information	in	the	bitstream.	

NOTE	 When	an	ICC	profile	is	specified,	SMPTE	RP	177	“Derivation	of	Basic	Television	Color	Equations”	may	be	of	
assistance	if	there	is	a	need	to	form	the	Y'CbCr	to	R'G'B'	conversion	matrix	for	the	color	primaries	described	by	the	
ICC	profile.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 159

	

12.1.5.2 Syntax

class ColourInformationBox extends Box(‘colr’){
 unsigned int(32) colour_type;
 if (colour_type == ‘nclx’) /* on-screen colours */
 {
 unsigned int(16) colour_primaries;
 unsigned int(16) transfer_characteristics;
 unsigned int(16) matrix_coefficients;
 unsigned int(1) full_range_flag;
 unsigned int(7) reserved = 0;
 }
 else if (colour_type == ‘rICC’)
 {
 ICC_profile; // restricted ICC profile
 }
 else if (colour_type == ‘prof’)
 {
 ICC_profile; // unrestricted ICC profile
 }
}

12.1.5.3 Semantics

colour_type:	 an	 indication	 of	 the	 type	 of	 colour	 information	 supplied.	 For	 colour_type
‘nclx’: these	fields	are	exactly	the	four	bytes	defined	for	PTM_COLOR_INFO()	 in	A.7.2	of	
ISO/IEC	29199‐2	but	note	that	the	full	range	flag	is	here	in	a	different	bit	position	

ICC_profile: an	ICC	profile	as	defined	in	ISO	15076‐1	or	ICC.1:2010	is	supplied.	

12.2 Audio media

12.2.1 Media handler

Audio	media	uses	the	‘soun’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	8.4.3.	

12.2.2 Sound media header

12.2.2.1 Definition

Box	Types:	 	‘smhd’		
Container:	 Media	Information	Box	(‘minf’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	specific	media	header	shall	be	present	

Audio	 tracks	 use	 the	 SoundMediaHeaderbox	 in	 the	 media	 information	 box	 as	 defined	 in	 8.4.5.	 The	
sound	media	header	 contains	 general	presentation	 information,	 independent	of	 the	 coding,	 for	 audio	
media.	This	header	is	used	for	all	tracks	containing	audio.	

12.2.2.2 Syntax

aligned(8) class SoundMediaHeaderBox
 extends FullBox(‘smhd’, version = 0, 0) {
 template int(16) balance = 0;
 const unsigned int(16) reserved = 0;
}

12.2.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	

ISO/IEC 14496-12:2015(E)

160	 ©	ISO/IEC	2015	–	All	rights	reserved

	

balance is	a	fixed‐point	8.8	number	that	places	mono	audio	tracks	in	a	stereo	space;	0	is	centre	
(the	normal	value);	full	left	is	‐1.0	and	full	right	is	1.0.	

12.2.3 Sample entry

12.2.3.1 Definition

Audio	tracks	use	AudioSampleEntry	or	AudioSampleEntryV1.	

The	 samplerate,	 samplesize	 and	 channelcount	 fields	 document	 the	 default	 audio	 output	
playback	 format	 for	 this	 media.	 The	 timescale	 for	 an	 audio	 track	 should	 be	 chosen	 to	 match	 the	
sampling	rate,	or	be	an	integer	multiple	of	it,	to	enable	sample‐accurate	timing.	When	channelcount	
is	 a	 value	 greater	 than	 zero,	 it	 indicates	 the	 intended	 number	 of	 loudspeaker	 channels	 in	 the	 audio	
stream.	A	ChannelCount	of	1	indicates	mono	audio,	and	2	indicates	stereo	(left/right).	When	values	
greater	than	2	are	used,	the	codec	configuration	should	identify	the	channel	assignment.	

When	it	is	desired	to	indicate	an	audio	sampling	rate	greater	than	the	value	that	can	be	represented	in	
the	samplerate	field,	the	following	may	be	used:	

 an	AudioSampleEntryV1	is	used,	which	requires	that	the	enclosing	Sample	Description	Box	also	
take	the	version	1;	

 a	Sampling	Rate	box	may	be	present	only	in	an	AudioSampleEntryV1,	and	when	present,	it	over‐
rides	the	samplerate	field	and	documents	the	actual	sampling	rate;	

 when	the	Sampling	Rate	box	is	present,	the	media	timescale	should	be	the	same	as	the	sampling	
rate,	or	an	integer	division	or	multiple	of	it;	

 the	samplerate	field	in	the	sample	entry	should	contain	a	value	left‐shifted	16	bits	(as	for	
AudioSampleEntry)	that	matches	the	media	timescale,	or	be	an	integer	division	or	multiple	of	it.	

An	AudioSampleEntryV1	should	only	be	used	when	needed;	otherwise,	for	maximum	compatibility,	an	
AudioSampleEntry	should	be	used.	An	AudioSampleEntryV1	must	not	occur	in	a	SampleDescriptionBox	
with	version	set	to	0.	

The	audio	output	format	(samplerate,	samplesize	and	channelcount	fields)	in	the	sample	entry	
should	be	considered	definitive	only	for	codecs	that	do	not	record	their	own	output	configuration.	If	the	
audio	codec	has	definitive	 information	about	 the	output	 format,	 it	 shall	be	 taken	as	definitive;	 in	 this	
case	the	samplerate,	samplesize	and	channelcount	fields	in	the	sample	entry	may	be	ignored,	
though	sensible	values	should	be	chosen	(for	example,	the	highest	possible	sampling	rate).	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 161

	

12.2.3.2 Syntax

 // Audio Sequences

class AudioSampleEntry(codingname) extends SampleEntry (codingname){
 const unsigned int(32)[2] reserved = 0;
 template unsigned int(16) channelcount = 2;
 template unsigned int(16) samplesize = 16;
 unsigned int(16) pre_defined = 0;
 const unsigned int(16) reserved = 0 ;
 template unsigned int(32) samplerate = { default samplerate of media}<<16;
 ChannelLayout();
 // we permit any number of DownMix or DRC boxes:
 DownMixInstructions() [];
 DRCCoefficientsBasic() [];
 DRCInstructionsBasic() [];
 DRCCoefficientsUniDRC() [];
 DRCInstructionsUniDRC() [];
 Box (); // further boxes as needed
}

aligned(8) class SamplingRateBox extends FullBox(‘srat’) {
 unsigned int(32) sampling_rate;
}

class AudioSampleEntryV1(codingname) extends SampleEntry (codingname){
 unsigned int(16) entry_version; // must be 1,
 // and must be in an stsd with version ==1
 const unsigned int(16)[3] reserved = 0;
 template unsigned int(16) channelcount; // must be correct
 template unsigned int(16) samplesize = 16;
 unsigned int(16) pre_defined = 0;
 const unsigned int(16) reserved = 0 ;
 template unsigned int(32) samplerate = 1<<16;
 // optional boxes follow
 SamplingRateBox();
 ChannelLayout();
 // we permit any number of DownMix or DRC boxes:
 DownMixInstructions() [];
 DRCCoefficientsBasic() [];
 DRCInstructionsBasic() [];
 DRCCoefficientsUniDRC() [];
 DRCInstructionsUniDRC() [];
 Box (); // further boxes as needed
}

12.2.3.3 Semantics

ChannelCount is	the	number	of	channels	such	as	1	(mono)	or	2	(stereo)	
SampleSize	is	in	bits,	and	takes	the	default	value	of	16	
SampleRate	when	a	SamplingRateBox	is	absent	is	the	sampling	rate;	when	a	SamplingRateBox	is	

present,	is	a	suitable	integer	multiple	or	division	of	the	actual	sampling	rate.	This	32‐bit	field	is	
expressed	as	a	16.16	fixed‐point	number	(hi.lo)	

sampling_rate is	the	actual	sampling	rate	of	the	audio	media,	expressed	as	a	32‐bit	integer	

ISO/IEC 14496-12:2015(E)

162	 ©	ISO/IEC	2015	–	All	rights	reserved

	

12.2.4 Channel layout

12.2.4.1 Definition

Box	Types:	 ‘chnl’		
Container:	 Audio	sample	entry	
Mandatory:	 No	
Quantity:	 Zero	or	one	

This	box	may	appear	 in	 an	audio	 sample	entry	 to	document	 the	assignment	of	 channels	 in	 the	audio	
stream.	

The	channelcount	 field	 in	 the	AudioSampleEntry	 must	 be	 correct;	 an	 AudioSampleEntryV1	 is	
therefore	 required	 to	 signal	 values	 other	 than	2.	The	 channel	 layout	 can	be	 all	 or	part	 of	 a	 standard	
layout	(from	an	enumerated	list),	or	a	custom	layout	(which	also	allows	a	track	to	contribute	part	of	an	
overall	layout).	

A	stream	may	contain	channels,	objects,	neither,	or	both.	A	stream	that	 is	neither	channel	nor	object	
structured	can	implicitly	be	rendered	in	a	variety	of	ways.	

12.2.4.2 Syntax

aligned(8) class ChannelLayout extends FullBox(‘chnl’) {
 unsigned int(8) stream_structure;
 if (stream_structure & channelStructured) { // 1
 unsigned int(8) definedLayout;
 if (definedLayout==0) {
 for (i = 1 ; i <= channelCount ; i++) {
 // channelCount comes from the sample entry
 unsigned int(8) speaker_position;
 if (speaker_position == 126) { // explicit position
 signed int (16) azimuth;
 signed int (8) elevation;
 }
 }
 } else {
 unsigned int(64) omittedChannelsMap;
 // a ‘1’ bit indicates ‘not in this track’
 }
 }
 if (stream_structure & objectStructured) { // 2
 unsigned int(8) object_count;
 }
}

12.2.4.3 Semantics

stream_structure	is	a	field	of	flags	that	define	whether	the	stream	has	channel	or	object	
structure	(or	both,	or	neither);	the	following	flags	are	defined,	all	other	values	are	reserved:	
1	 the	stream	carries	channels	
2	 the	stream	carries	objects	

definedLayout	is	a	ChannelConfiguration	from	ISO/IEC	23001‐8;	
speaker_position	is	an	OutputChannelPosition	from	ISO/IEC	23001‐8.	If	an	explicit	position	is	

used,	then	the	azimuth	and	elevation	are	as	defined	as	for	speakers	in	ISO/IEC	23001‐8.	
azimuth	is	a	signed	value	in	degrees,	as	defined	for	LoudspeakerAzimuth	in	ISO/IEC	23001‐8	
elevation	is	a	signed	value,	in	degrees,	as	defined	for	LoudspeakerElevation	in	ISO/IEC	23001‐8	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 163

	

omittedChannelsMap	is	a	bit‐map	of	omitted	channels;	the	bits	in	the	channel	map	are	number	
from	least‐significant	to	most‐significant,	and	correspond	in	that	ordering	with	the	order	of	the	
channels	for	the	configuration	as	documented	in	ISO/IEC	23001‐8	ChannelConfiguration.	1‐bits	
in	 the	 channel	map	mean	 that	 a	 channel	 is	 absent.	 A	 zero	 value	 of	 the	map	 therefore	 always	
means	that	the	given	standard	layout	is	fully	present.	

12.2.5 Downmix Instructions

12.2.5.1 Definition

Box	Types:	 ‘dmix’		
Container:	 Audio	sample	entry	
Mandatory:	 No	
Quantity:	 Zero	or	more	

The	downmix	can	be	controlled	by	the	production	facility	if	necessary.	For	instance,	some	content	may	
require	more	attenuation	of	the	surround	channels	before	downmixing	to	maintain	intelligibility.	

The	downmix	support	is	designed	so	that	any	downmix	(e.g.	from	7.1	to	quad	as	well	as	to	stereo)	can	
be	described.	

It	 is	 possible	 to	 declare	 the	 loudness	 characteristics	 of	 the	 signal	 after	 downmix,	 and	 after	 DRC	 and	
downmix.	

If	 targetChannelCount*baseChannelCount	 is	 odd,	 the	 box	 is	 padded	 with	 4	 bits	 set	 to	 0xF.	 The	
targetChannelCount	must	be	consistent	with	the	targetLayout	(if	given),	and	must	be	less	than	or	equal	
to	the	channelcount.	

Each	downmix	is	uniquely	identified	by	an	ID.	

12.2.5.2 Syntax

aligned(8) class DownMixInstructions extends FullBox(‘dmix’) {
 unsigned int(8) targetLayout;
 unsigned int(1) reserved = 0;
 unsigned int(7) targetChannelCount;
 bit(1) in_stream;
 unsigned int(7) downmix_ID;
 if (in_stream==0)
 { // downmix coefficients are out of stream and supplied here
 int i, j;
 for (i = 1 ; i <= targetChannelCount; i++){
 for (j=1; j <= baseChannelCount; j++) {
 bit(4) bs_downmix_coefficient;
 }
 }
 }
}

12.2.5.3 Semantics

targetLayout	is	a	ChannelConfiguration	from	ISO/IEC	23001‐8	and	defines	the	resulting	layout	
after	downmix	

targetChannelCount	is	the	count	of	channels	in	the	resulting	stream,	and	must	correspond	with	
the	target	layout	

ISO/IEC 14496-12:2015(E)

164	 ©	ISO/IEC	2015	–	All	rights	reserved

	

downmix_ID	is	an	arbitrary	value	that	identifies	this	downmix,	and	must	be	unique	among	the	
DownMixInstructions	in	a	given	sample	entry;	there	are	two	reserved	values,	0	and	0x7F,	which	
must	not	be	used	

in_stream	has	a	value	of	1	when	the	downmix	coefficients	are	in	the	stream.	Otherwise,	it	is	zero..	
bs_downmix_coefficient	is	encoded	as	defined	in	the	following	tables:	

Value Hex Encoding (4 bits)
0.00	dB	 0x0	
‐0.50	dB	 0x1	
‐1.00	dB	 0x2	
‐1.50	dB	 0x3	
‐2.00	dB	 0x4	
‐2.50	dB	 0x5	
‐3.00	dB	 0x6	
‐3.50	dB	 0x7	
‐4.00	dB	 0x8	
‐4.50	dB	 0x9	
‐5.00	dB	 0xA	
‐5.50	dB	 0xB	
‐6.00	dB	 0xC	
‐7.50	dB	 0xD	
‐9.00	dB	 0xE	
‐∞	dB	 0xF	

Table 5: Downmix Coefficient Encoding for non-LFE channels

Value Hex Encoding (4 bits)

10.00	dB	 0x0	
6.00	dB	 0x1	
4.5	dB	 0x2	
3.00	dB	 0x3	
1.50	dB	 0x4	
0.00	dB	 0x5	
‐1.50	dB	 0x6	
‐3.00	dB	 0x7	
‐4.50	dB	 0x8	
‐6.00	dB	 0x9	
‐10.00	dB	 0xA	
‐15.00	dB	 0xB	
‐20.00	dB	 0xC	
‐30.00	dB	 0xD	
‐40.00	dB	 0xE	
‐∞	dB	 0xF	

Table 6: Downmix Coefficient Encoding for LFE channel

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 165

	

12.2.6 DRC Information

A	DRC	is	used	in	the	encoder	to	generate	gain	values	using	one	of	the	pre‐defined	DRC	characteristics	as	
defined	in	ISO/IEC	23001‐8;	the	coefficients	are	placed	either	in‐stream	or	in	an	associated	meta‐data	
track.	

For	 some	content,	 such	 as	 some	multi‐channel	 content,	 it	may	be	 advantageous	 to	use	different	DRC	
characteristics	in	different	channels.	For	instance,	if	speech	is	exclusively	present	in	the	center	channel,	
this	 feature	 can	 be	 very	 useful.	 It	 is	 supported	 by	 the	 assignment	 of	 DRC	 characteristics	 to	 audio	
channels.	

It	is	possible	to	declare	the	loudness	characteristics	of	the	signal	after	DRC.	

DRC	support	 includes	supporting	 in‐stream	DRC	coefficients,	and	a	separate	 track	carrying	 them;	 the	
latter	 is	 particularly	 useful	 for	 legacy	 coding	 systems	 (including	 uncompressed	 audio)	 that	 have	 no	
provision	for	in‐stream	coefficients.	

In	 the	 ISO	base	media	 file	 format,	 the	 audio	 content	may	be	 carried	 in	multiple	 tracks	where	 a	 base	
track	contains	the	DRC	metadata	for	all	tracks.	The	additional	tracks	are	referenced	by	the	base	track	
using	a	track	reference	of	type	‘adda’	(additional	audio).	The	channels	processed	by	the	DRC	are	all	the	
channels	 in	the	base	track,	plus	all	 the	channels	 in	track(s)	referenced,	 in	the	order	of	the	references.	
The	DRC	channel	groups	apply	to	all	those	channels	(even	if	they	are	channels	in	a	track	that	is	disabled	
or	not	currently	being	played).	

The	 boxes	 DRCCoefficientsBasic, DRCCoefficientsUniDRC,	 DRCInstructionsBasic,	
and	 DRCInstructionsUniDRC	 may	 occur	 in	 an	 AudioSampleEntry	 and	 are	 defined	 in	 ISO/IEC	
23003‐4.	

12.2.7 Audio stream loudness

12.2.7.1 Introduction

Box	Types:	 ‘ludt’	
Container:	 Track	user‐data	‘udta’	
Mandatory:	 No	
Quantity:	 Zero	or	more	

Loudness	 declarations	 are	 placed	 in	 user‐data	 boxes,	 to	 enable	 their	 presence	 and	 update	 in	movie	
fragments.	In	particular,	in	live	scenarios,	user‐data	in	the	initial	movie	atom	may	be	a	‘promise	not	to	
exceed’	or	‘best	guess’,	and	then	user‐data	updates	give	better	(but	still	generally	valid)	values.	Thus,	for	
example,	a	loudness	range	in	this	user	data	that	is	associated	with	a	particular	set	of	DRC	instructions	
constitutes	a	‘promise’	rather	than	a	measurement,	under	these	circumstances.	

Several	 metadata	 values	 are	 available	 that	 describe	 aspects	 of	 the	 dynamic	 range.	 The	 size	 of	 the	
dynamic	 range	can	be	useful	 in	adjusting	 the	DRC	characteristic,	 e.g.	 the	DRC	 is	 less	aggressive	 if	 the	
dynamic	range	is	small	or	the	DRC	can	even	be	turned	off.	

True	Peak	and	maximum	loudness	values	can	be	useful	for	estimating	the	headroom,	for	instance	when	
loudness	normalization	results	in	a	positive	gain	[dB]	or	when	headroom	is	needed	to	avoid	clipping	of	

ISO/IEC 14496-12:2015(E)

166	 ©	ISO/IEC	2015	–	All	rights	reserved

	

the	downmix.	The	DRC	characteristic	 can	 then	be	adjusted	 to	approach	a	headroom	 target.	The	peak	
level	of	the	associated	content	is	represented	here	in	a	coding‐independent	way.	

The	 audio	 sound	 pressure	 level	 that	 the	 content	was	mixed	 to	 can	 also	 be	 documented.	 (If	 audio	 is	
listened	to	at	a	level	other	than	the	mixing	level,	this	can	affect	the	perceived	tonal	balance.)	

The	following	measures	may	also	be	used:	

 Maximum	of	the	Loudness	Range	derived	from	EBU‐Tech	3342	

 Maximum	Momentary	Loudness	derived	from	ITU‐R	BS.1771‐1	or	EBU‐Tech	3341	

 Maximum	Short‐Term	Loudness	derived	from	ITU‐R	BS.1771‐1	or	EBU‐Tech	3341	

 Short‐Term	Loudness	defined	in	ITU‐R	BS.1771‐1	or	EBU‐Tech	3341	

Under	some	circumstances	 it	can	be	desirable	to	 indicate	the	 loudness	characteristics	of	an	album,	 in	
each	 song	 that	 the	 album	 contains.	 A	 separate	 box	 can	 be	 specified	 for	 that	 purpose.	 The	
TrackLoudnessInfo	 and	 	 AlbumLoudnessInfo	 provide	 loudness	 information	 for	 the	 song,	 and	 for	 the	
entire	album	which	contains	the	song,	respectively.	

The	 program	 loudness	 is	measured	 using	 ITU‐R	 BS.1770‐3	 over	 the	 associated	 content;	 the	 ‘anchor	
loudness’	 is	 the	 loudness	 of	 the	 anchor	 content,	 where	 what	 that	 content	 is,	 is	 determined	 by	 the	
content	 author;	 one	 suitable	 value	 (especially	 for	 content	 for	 which	 the	 main	 content	 is	 speech)	 is	
‘dialog	normal	 level’	 or	DialNorm	as	defined	 in	ATSC	Doc.	A/52:2012.	 ISO/IEC	23003‐4	 specifies	 the	
measurement	systems,	measurement	methods	and	the	coding	of	all	loudness	and	peak‐related	values.	

12.2.7.2 Syntax

aligned(8) class LoudnessBaseBox extends FullBox(loudnessType) {
 unsigned int(3) reserved = 0;
 unsigned int(7) downmix_ID; // matching downmix
 unsigned int(6) DRC_set_ID; // to match a DRC box
 signed int(12) bs_sample_peak_level;
 signed int(12) bs_true_peak_level;
 unsigned int(4) measurement_system_for_TP;
 unsigned int(4) reliability_for_TP;
 unsigned int(8) measurement_count;
 int i;
 for (i = 1 ; i <= measurement_count; i++){
 unsigned int(8) method_definition;
 unsigned int(8) method_value;
 unsigned int(4) measurement_system;
 unsigned int(4) reliability;
 }
}

aligned(8) class TrackLoudnessInfo extends LoudnessBaseBox(‘tlou’) { }

aligned(8) class AlbumLoudnessInfo extends LoudnessBaseBox (‘alou’) { }

aligned(8) class LoudnessBox extends Box(‘ludt’) {
 loudness TrackLoudnessInfo[]; // a set of one or more loudness boxes
 albumLoudness AlbumLoudnessInfo[]; // if applicable
}

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 167

	

12.2.7.3 Semantics

downmix_ID	when	zero,	declares	the	loudness	characteristics	of	the	layout	without	downmix.	If	
non‐zero,	this	box	declares	the	loudness	after	applying	the	downmix	with	the	matching	
downmix_ID and	must	match	a	value	in	exactly	one	box	in	the	the	sample	entry	of	this	track	

DRC_set_ID	when	zero,	declares	the	characteristics	without	applying	a	DRC.	If	non‐zero,	this	box	
declares	the	loudness	after	applying	the	DRC	with	the	matching	DRC_set_ID and	must	match	
a	value	in	exactly	one	box	in	the	the	sample	entry	of	this	track	

bs_sample_peak_level	takes	a	value	for	the	sample	peak	level	as	defined	in	ISO/IEC	23003‐4;	
all	other	values	are	reserved	

bs_true_peak_level	takes	a	value	for	the	true	peak	level	as	defined	in	ISO/IEC	23003‐4;	all	
other	values	are	reserved	

measurement_system_for_TP	takes	an	index	for	the	measurement	system	as	defined	in	
ISO/IEC	23003‐4;	all	other	values	are	reserved	

method_definition	takes	an	index	for	the	measurement	method	as	defined	in	ISO/IEC	23003‐4;	
all	others	are	reserved	

measurement_system	takes	an	index	for	the	measurement	system	as	defined	in	ISO/IEC	23003‐
4;	all	others	are	reserved	

reliability and reliability_for_TP each	take	one	of	the	following	values	(all	other	
values	are	reserved):
0:	Reliability	is	unknown	
1:	Value	is	reported/imported	but	unverified	
2:	Value	is	a	‘not	to	exceed’	ceiling	
3:	Value	is	measured	and	accurate	

12.3 Metadata media

12.3.1 Media handler

Timed	metadata	media	uses	the	‘meta’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	
8.4.3.	

NOTE	 MPEG‐7	 streams,	 which	 are	 a	 specific	 kind	 of	 metadata	 stream,	 have	 their	 own	 handler	 declared,	
documented	in	the	MP4	file	format	[ISO/IEC	14496‐14].	

NOTE	 	metadata	tracks	are	linked	to	the	track	they	describe	using	a	track‐reference	of	type	‘cdsc’.	

12.3.2 Media header

Metadata	tracks	use	a	null	media	header	(‘nmhd’),	as	defined	in	subclause	8.4.5.2.	

12.3.3 Sample entry

12.3.3.1 Definition

Timed	metadata	tracks	use	MetaDataSampleEntry.	

An	optional	BitRateBox	may	be	present	at	the	end	of	any	MetaDataSampleEntry	to	signal	the	bit	rate	
information	of	a	stream.	This	can	be	used	 for	buffer	configuration.	 In	case	of	XML	metadata	 it	can	be	
used	to	choose	the	appropriate	memory	representation	format	(DOM,	STX).	

An	optional	bitrate	box	may	be	used	in	the	URIMetaSampleEntry	entry,	as	usual.	

ISO/IEC 14496-12:2015(E)

168	 ©	ISO/IEC	2015	–	All	rights	reserved

	

The	 URIMetaSampleEntry	 entry	 contains,	 in	 a	 box,	 the	 URI	 defining	 the	 form	 of	 the	 metadata,	 and	
optional	initialization	data.	The	format	of	both	the	samples	and	of	the	initialization	data	is	defined	by	all	
or	part	of	the	URI	form.	

It	may	be	the	case	that	the	URI	 identifies	a	format	of	metadata	that	allows	there	to	be	more	than	one	
‘stated	fact’	within	each	sample.	However,	all	metadata	samples	in	this	format	are	effectively	‘I	frames’,	
defining	the	entire	set	of	metadata	for	the	time	interval	they	cover.	This	means	that	the	complete	set	of	
metadata	at	any	instant,	for	a	given	track,	is	contained	in	(a)	the	time‐aligned	samples	of	the	track(s)	(if	
any)	describing	that	track,	plus	(b)	the	track	metadata	(if	any),	the	movie	metadata	(if	any)	and	the	file	
metadata	(if	any).	

If	incrementally‐changed	metadata	is	needed,	the	MPEG‐7	framework	provides	that	capability.	

Information	on	URI	forms	for	some	metadata	systems	can	be	found	in	Annex	G.	

12.3.3.2 Syntax

class MetaDataSampleEntry(codingname) extends SampleEntry (codingname) {
 Box[] other_boxes; // optional
}

class XMLMetaDataSampleEntry() extends MetaDataSampleEntry (’metx‘) {
 string content_encoding; // optional
 string namespace;
 string schema_location; // optional
 BitRateBox (); // optional
}

class TextConfigBox() extends Fullbox (‘txtC’, 0, 0) {
 string text_config;
}

class TextMetaDataSampleEntry() extends MetaDataSampleEntry (‘mett’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
 TextConfigBox (); // optional
}

aligned(8) class URIBox
 extends FullBox(‘uri ’, version = 0, 0) {
 string theURI;
}

aligned(8) class URIInitBox
 extends FullBox(‘uriI’, version = 0, 0) {
 unsigned int(8) uri_initialization_data[];
}

class URIMetaSampleEntry() extends MetaDataSampleEntry (’urim‘) {
 URIbox the_label;
 URIInitBox init; // optional
 BitRateBox (); // optional
}

12.3.3.3 Semantics

content_encoding	 ‐	 is a null-terminated string in UTF-8 characters, and provides	 a	MIME	 type	
which	identifies	the	content	encoding	of	the	timed	metadata.	It	is	defined	in	the	same	way	as	for	
an	 ItemInfoEntry	 in	 this	 specification.	 If	 not	 present	 (an	 empty	 string	 is	 supplied)	 the	 timed	
metadata	is	not	encoded.	An	example	for	this	field	is	‘application/zip’.	Note	that	no	MIME	types	
for	BiM	[ISO/IEC	23001‐1]	and	TeM	[ISO/IEC	15938‐1]	currently	exist.	Thus	the	experimental	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 169

	

MIME	 types	 ‘application/x‐BiM’	 and	 ‘text/x‐TeM’	 shall	 be	 used	 to	 identify	 these	 encoding	
mechanisms.	

namespace	is	a	null‐terminated	field	consisting	of	a	space‐separated	list,	in	UTF‐8	characters,	of	
one	or	more	XML	namespaces	to	which	the	sample	documents	conform.	When	used	for	
metadata,	this	is	needed	for	identifying	its	type,	e.g.	gBSD	or	AQoS	[MPEG‐21‐7]	and	for	
decoding	using	XML	aware	encoding	mechanisms	such	as	BiM.	

schema_location	is	an	optional	null‐terminated	field	consisting	of	a	space‐separated	list,	in	
UTF‐8	characters,	of	zero	or	more	URL’s	for	XML	schema(s)	to	which	the	sample	document	
conforms.	If	there	is	one	namespace	and	one	schema,	then	this	field	shall	be	the	URL	of	the	one	
schema.	If	there	is	more	than	one	namespace,	then	the	syntax	of	this	field	shall	adhere	to	that	for	
xsi:schemaLocation	attribute	as	defined	by	[XML].	When	used	for	metadata,	this	is	needed	for	
decoding	of	the	timed	metadata	by	XML	aware	encoding	mechanisms	such	as	BiM.	

mime_format	 ‐	provides	a	MIME	type,	 in	null‐terminated	UTF‐8	characters,	which	 identifies	 the	
content	format	of	the	samples.	Examples	for	this	field	include	‘text/html’	and	‘text/plain’.	

text_config	 ‐	 provides	 the	 initial	 text	 of	 each	document,	 in	null‐terminated	UTF‐8	 characters,	
which	is	prepended	before	the	contents	of	each	sync	sample.	

theURI is	a	URI	formatted	according	to	the	rules	in	6.2.4;	
uri_initialization_data	is	opaque	data	whose	form	is	defined	in	the	documentation	of	the	

URI	form.	

12.4 Hint media

12.4.1 Media handler

Hint	media	uses	the	‘hint’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	8.4.3.	

12.4.2 Hint media header

12.4.2.1 Hint Media Header Box

Box	Types:	 ’hmhd’		
Container:	 Media	Information	Box	(‘minf’)	
Mandatory:	Yes	
Quantity:	 Exactly	one	specific	media	header	shall	be	present	

Hint	 tracks	 use	 the	HintMediaHeaderbox	 in	 the	media	 information	 box,	 as	 defined	 in	 8.4.5.	 The	 hint	
media	header	 contains	 general	 information,	 independent	of	 the	protocol,	 for	hint	 tracks.	 (A	PDU	 is	 a	
Protocol	Data	Unit.)	

12.4.2.2 Syntax

aligned(8) class HintMediaHeaderBox
 extends FullBox(‘hmhd’, version = 0, 0) {
 unsigned int(16) maxPDUsize;
 unsigned int(16) avgPDUsize;
 unsigned int(32) maxbitrate;
 unsigned int(32) avgbitrate;
 unsigned int(32) reserved = 0;
}

12.4.2.3 Semantics

version is	an	integer	that	specifies	the	version	of	this	box	
maxPDUsize gives	the	size	in	bytes	of	the	largest	PDU	in	this	(hint)	stream	
avgPDUsize gives	the	average	size	of	a	PDU	over	the	entire	presentation	
maxbitrate gives	the	maximum	rate	in	bits/second	over	any	window	of	one	second	

ISO/IEC 14496-12:2015(E)

170	 ©	ISO/IEC	2015	–	All	rights	reserved

	

avgbitrate gives	the	average	rate	in	bits/second	over	the	entire	presentation	

12.4.3 Sample entry

12.4.3.1 Definition

Hint	tracks	use	an	entry	format	specific	to	their	protocol,	with	an	appropriate	name.	

For	hint	tracks,	the	sample	description	contains	appropriate	declarative	data	for	the	streaming	protocol	
being	used,	and	the	format	of	the	hint	track.	The	definition	of	the	sample	description	is	specific	to	the	
protocol.	

The	 ‘protocol’	 and	 ‘codingname’	 fields	 are	 registered	 identifiers	 that	 uniquely	 identify	 the	 streaming	
protocol	or	compression	format	decoder	to	be	used.	A	given	protocol	or	codingname	may	have	optional	
or	 required	 extensions	 to	 the	 sample	 description	 (e.g.	 codec	 initialization	 parameters).	 All	 such	
extensions	shall	be	within	boxes;	these	boxes	occur	after	the	required	fields.	Unrecognized	boxes	shall	
be	ignored.	

12.4.3.2 Syntax

class HintSampleEntry() extends SampleEntry (protocol) {
 unsigned int(8) data [];
}

12.5 Text media

12.5.1 Media handler

The	timed	text	media	type	indicates	that	the	associated	decoder	will	process	only	text	data.	Timed	text	
media	uses	the	‘text’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	8.4.3.	

12.5.2 Media header

Timed	text	tracks	use	a	null	media	header	(‘nmhd’),	as	defined	in	subclause	8.4.5.2.	

12.5.3 Sample entry

12.5.3.1 Definition

Timed	text	tracks	use	PlainTextSampleEntry.	

12.5.3.2 Syntax

class PlainTextSampleEntry(codingname) extends SampleEntry (codingname) {
}

class SimpleTextSampleEntry(codingname) extends PlainTextSampleEntry (‘stxt’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
 TextConfigBox (); // optional
}

12.5.3.3 Semantics

content_encoding	 ‐	 is a null-terminated string in UTF-8 characters, and provides	 a	MIME	 type	
which	identifies	the	content	encoding	of	the	timed	text.	It	is	defined	in	the	same	way	as	for	an	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 171

	

ItemInfoEntry	in	this	specification.	If	not	present	(an	empty	string	is	supplied)	the	timed	text	is	
not	encoded.	An	example	for	this	field	is	‘application/zip’.	

mime_format	 ‐	provides	a	MIME	type,	 in	null‐terminated	UTF‐8	characters,	which	 identifies	 the	
content	format	of	the	samples.	Examples	for	this	field	include	‘text/html’	and	‘text/plain’.	

12.6 Subtitle media

12.6.1 Media handler

The	 subtitle	 media	 type	 indicates	 that	 the	 associated	 decoder	 will	 process	 text	 data	 and	 possibly	
images.	Subtitle	media	uses	the	‘subt’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	
8.4.3.	

12.6.2 Subtitle media header

12.6.2.1 Definition

Subtitle	tracks	use	the	SubtitleMediaHeaderbox	in	the	media	information	box,	as	defined	in	8.4.5.	The	
subtitle	media	header	contains	general	presentation	information,	independent	of	the	coding,	for	subtitle	
media.	This	header	is	used	for	all	tracks	containing	subtitles.	

12.6.2.2 Syntax

aligned(8) class SubtitleMediaHeaderBox
 extends FullBox (‘sthd’, version = 0, flags = 0){
}

12.6.2.3 Semantics

version ‐	is	an	integer	that	specifies	the	version	of	this	box.	
flags ‐	is	a	24‐bit	integer	with	flags	(currently	all	zero).	

12.6.3 Sample entry

12.6.3.1 Definition

Subtitle	tracks	use	SubtitleSampleEntry.	

12.6.3.2 Syntax

class SubtitleSampleEntry(codingname) extends SampleEntry (codingname) {
}

class XMLSubtitleSampleEntry() extends SubtitleSampleEntry (’stpp‘) {
 string namespace;
 string schema_location; // optional
 string auxiliary_mime_types;
 // optional, required if auxiliary resources are present
 BitRateBox (); // optional

}

class TextSubtitleSampleEntry() extends SubtitleSampleEntry (‘sbtt’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
 TextConfigBox (); // optional
}

ISO/IEC 14496-12:2015(E)

172	 ©	ISO/IEC	2015	–	All	rights	reserved

	

12.6.3.3 Semantics

content_encoding	 ‐	 is a null-terminated string in UTF-8 characters, and provides	 a	MIME	 type	
which	 identifies	 the	 content	 encoding	of	 the	 subtitles.	 It	 is	defined	 in	 the	 same	way	as	 for	an	
ItemInfoEntry	 in	 this	 specification.	 If	 not	 present	 (an	 empty	 string	 is	 supplied)	 the	 subtitle	
samples	are	not	encoded.	An	example	for	this	field	is	‘application/zip’.	

namespace	is	a	null‐terminated	field	consisting	of	a	space‐separated	list,	in	UTF‐8	characters,	of	
one	or	more	XML	namespaces	to	which	the	sample	documents	conform.	When	used	for	
metadata,	this	is	needed	for	identifying	its	type,	e.g.	gBSD	or	AQoS	[MPEG‐21‐7]	and	for	
decoding	using	XML	aware	encoding	mechanisms	such	as	BiM.	

schema_location	is	an	optional	null‐terminated	field	consisting	of	a	space‐separated	list,	in	
UTF‐8	characters,	of	zero	or	more	URL’s	for	XML	schema(s)	to	which	the	sample	document	
conforms.	If	there	is	one	namespace	and	one	schema,	then	this	field	shall	be	the	URL	of	the	one	
schema.	If	there	is	more	than	one	namespace,	then	the	syntax	of	this	field	shall	adhere	to	that	for	
xsi:schemaLocation	attribute	as	defined	by	[XML].	When	used	for	metadata,	this	is	needed	for	
decoding	of	the	timed	metadata	by	XML	aware	encoding	mechanisms	such	as	BiM.	

mime_format	 ‐	provides	a	MIME	type,	 in	null‐terminated	UTF‐8	characters,	which	 identifies	 the	
content	format	of	the	samples.	Examples	for	this	field	include	‘text/html’	and	‘text/plain’.	

auxiliary_mime_types	indicates	the	media	type	of	all	auxiliary	resources,	such	as	images	and	
fonts,	 if	present,	stored	as	subtitle	subsamples.	 If	 there	is	more	than	one	mime_type,	then	this	
field	shall	be	a	space‐separated	list.	This	field	is	null‐terminated	in	UTF‐8	characters.	

12.7 Font media

12.7.1 Media handler

Font	media	uses	the	‘fdsm’	handler	type	in	the	handler	box	of	the	media	box,	as	defined	in	8.4.3.	

12.7.2 Media header

Font	tracks	use	a	NullMediaHeader.	

12.7.3 Sample entry

12.7.3.1 Definition

Font	streams	use	a	FontSampleEntry.	

12.7.3.2 Syntax

class FontSampleEntry(codingname) extends SampleEntry (codingname){
 //other boxes from derived specifications
 BitRateBox (); // optional
}
12.8 Transformed media

Protected	media	is	described	in	8.12.	

Incomplete	media	is	described	in	8.17.	

Restricted	media	is	described	in	8.15.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 173

	

Annex A	
(informative)	

Overview and Introduction

A.1 Section Overview

This	 section	 provides	 an	 introduction	 to	 the	 file	 format,	 that	 potentially	 assists	 readers	 in	
understanding	 the	 overall	 concepts	 underlying	 the	 file	 format.	 It	 forms	 an	 informative	 annex	 to	 this	
specification.	

A.2 Core Concepts

In	 the	 file	 format,	 the	 overall	 presentation	 is	 called	 a	movie.	 It	 is	 logically	 divided	 into	 tracks;	 each	
track	 represents	 a	 timed	 sequence	 of	media	 (frames	 of	 video,	 for	 example).	Within	 each	 track,	 each	
timed	unit	is	called	a	sample;	this	might	be	a	frame	of	video	or	audio.	Samples	are	implicitly	numbered	
in	sequence.	Note	that	a	frame	of	audio	may	decompress	into	a	sequence	of	audio	samples	(in	the	sense	
this	word	is	used	in	audio);	in	general,	this	specification	uses	the	word	sample	to	mean	a	timed	frame	or	
unit	 of	 data.	 Each	 track	has	 one	or	more	sample descriptions;	 each	 sample	 in	 the	 track	 is	 tied	 to	 a	
description	by	reference.	The	description	defines	how	the	sample	may	be	decoded	(e.g.	it	identifies	the	
compression	algorithm	used).	

Unlike	many	other	multi‐media	file	formats,	this	format,	with	its	ancestors,	separates	several	concepts	
that	 are	 often	 linked.	 Understanding	 this	 separation	 is	 key	 to	 understanding	 the	 file	 format.	 In	
particular:	

The	physical	structure	of	the	file	is	not	tied	to	the	physical	structures	of	the	media	itself.	For	example,	
many	 file	 formats	 ‘frame’	 the	media	 data,	 putting	 headers	 or	 other	 data	 immediately	 before	 or	 after	
each	frame	of	video;	this	file	format	does	not	do	this.	

Neither	the	physical	structure	of	the	file,	nor	the	layout	of	the	media,	is	tied	to	the	time	ordering	of	the	
media.	Frames	of	video	need	not	be	laid	down	in	the	file	in	time	order	(though	they	may	be).	

This	means	that	there	are	file	structures	that	describe	the	placement	and	timing	of	the	media;	these	file	
structures	permit,	but	do	not	require,	time‐ordered	files.	

All	the	data	within	a	conforming	file	is	encapsulated	in	boxes	(called	atoms	in	predecessors	of	this	file	
format).	 There	 is	 no	 data	 outside	 the	 box	 structure.	 All	 the	 metadata,	 including	 that	 defining	 the	
placement	 and	 timing	 of	 the	 media,	 is	 contained	 in	 structured	 boxes.	 This	 specification	 defines	 the	
boxes.	The	media	data	(frames	of	video,	 for	example)	 is	referred	to	by	this	metadata.	The	media	data	
may	be	in	the	same	file	(contained	in	one	or	more	boxes),	or	can	be	in	other	files;	the	metadata	permits	
referring	to	other	files	by	means	of	URLs.	The	placement	of	the	media	data	within	these	secondary	files	
is	 entirely	 described	 by	 the	 metadata	 in	 the	 primary	 file.	 They	 need	 not	 be	 formatted	 to	 this	
specification,	though	they	may	be;	it	is	possible	that	there	are	no	boxes,	for	example,	in	these	secondary	
media	files.	

ISO/IEC 14496-12:2015(E)

174	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Tracks	can	be	of	various	kinds.	Three	are	important	here.	Video tracks	contain	samples	that	are	visual;	
audio tracks	 contain	 audio	media.	Hint tracks	 are	 rather	 different;	 they	 contain	 instructions	 for	 a	
streaming	server	in	how	to	form	packets	for	a	streaming	protocol,	from	the	media	tracks	in	a	file.	Hint	
tracks	can	be	ignored	when	a	file	is	read	for	local	playback;	they	are	only	relevant	to	streaming.	

A.3 Physical structure of the media

The	boxes	that	define	the	layout	of	the	media	data	are	found	in	the	sample	table.	These	include	the	data	
reference,	the	sample	size	table,	the	sample	to	chunk	table,	and	the	chunk	offset	table.	Between	them,	
these	tables	allow	each	sample	in	a	track	to	be	both	located,	and	its	size	to	be	known.	

The	data references	permit	locating	media	within	secondary	media	files.	This	allows	a	composition	to	
be	built	from	a	‘library’	of	media	in	separate	files,	without	actually	copying	the	media	into	a	single	file.	
This	greatly	facilitates	editing,	for	example.	

The	tables	are	compacted	to	save	space.	In	addition,	it	is	expected		that	the	interleave	will	not	be	sample	
by	 sample,	 but	 that	 several	 samples	 for	 a	 single	 track	will	 occur	 together,	 then	 a	 set	 of	 samples	 for	
another	track,	and	so	on.	These	sets	of	contiguous	samples	for	one	track	are	called	chunks.	Each	chunk	
has	an	offset	into	its	containing	file	(from	the	beginning	of	the	file).	Within	the	chunk,	the	samples	are	
contiguously	 stored.	 Therefore,	 if	 a	 chunk	 contains	 two	 samples,	 the	 position	 of	 the	 second	may	 be	
found	 by	 adding	 the	 size	 of	 the	 first	 to	 the	 offset	 for	 the	 chunk.	 The	 chunk	 offset	 table	 provides	 the	
offsets;	the	sample	to	chunk	table	provides	the	mapping	from	sample	number	to	chunk	number.	

Note	that	in	between	the	chunks	(but	not	within	them)	there	may	be	‘dead	space’,	un‐referenced	by	the	
media	data.	Thus,	during	editing,	if	some	media	data	is	not	needed,	it	can	simply	be	left	unreferenced;	
the	data	need	not	be	copied	to	remove	it.	Likewise,	if	the	media	data	is	in	a	secondary	file	formatted	to	a	
‘foreign’	file	format,	headers	or	other	structures	imposed	by	that	foreign	format	can	simply	be	skipped.	

A.4 Temporal structure of the media

Timing	in	the	file	can	be	understood	by	means	of	a	number	of	structures.	The	movie,	and	each	track,	has	
a	timescale.	This	defines	a	time	axis	which	has	a	number	of	ticks	per	second.	By	suitable	choice	of	this	
number,	 exact	 timing	 can	 be	 achieved.	 Typically,	 this	 is	 the	 sampling	 rate	 of	 the	 audio,	 for	 an	 audio	
track.	 For	 video,	 a	 suitable	 scale	 should	 be	 chosen.	 For	 example,	 a	media	TimeScale	 of	 30000	 and	
media	sample	durations	of	1001	exactly	define	NTSC	video	(often,	but	incorrectly,	referred	to	as	29.97)	
and	provide	19.9	hours	of	time	in	32	bits.	

The	 time	structure	of	a	 track	may	be	affected	by	an	edit list.	These	provide	 two	key	capabilities:	 the	
movement	(and	possible	re‐use)	of	portions	of	the	time‐line	of	a	track,	in	the	overall	movie,	and	also	the	
insertion	of	 ‘blank’	 time,	known	as	empty	edits.	Note	 in	particular	that	 if	a	 track	does	not	start	at	 the	
beginning	of	a	presentation,	an	initial	empty	edit	is	needed.	

The	overall	duration	of	each	track	 is	defined	 in	headers;	 this	provides	a	useful	summary	of	 the	track.	
Each	 sample	 has	 a	 defined	 duration.	 The	 exact	 presentation	 time	 (its	 time‐stamp)	 of	 a	 sample	 is	
defined	by	summing	the	durations	of	the	preceding	samples.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 175

	

A.5 Interleave

The	temporal	and	physical	structures	of	the	file	may	be	aligned.	This	means	that	the	media	data	has	its	
physical	 order	within	 its	 container	 in	 time	order,	 as	used.	 In	 addition,	 if	 the	media	 data	 for	multiple	
tracks	is	contained	in	the	same	file,	this	media	data	would	be	interleaved.	Typically,	in	order	to	simplify	
the	reading	of	the	media	data	for	one	track,	and	to	keep	the	tables	compact,	this	interleave	is	done	at	a	
suitable	time	interval	(e.g.	1	second),	rather	than	sample	by	sample.	This	keeps	the	number	of	chunks	
down,	and	thus	the	chunk	offset	table	small.	

A.6 Composition

If	 multiple	 audio	 tracks	 are	 contained	 in	 the	 same	 file,	 they	 are	 implicitly	 mixed	 for	 playback.	 This	
mixing	is	affected	by	the	overall	track	volume,	and	the	left/right	balance.	

Likewise,	video	 tracks	are	composed,	by	 following	 their	 layer	number	(from	back	 to	 front),	and	 their	
composition	 mode.	 In	 addition,	 each	 track	 may	 be	 transformed	 by	 means	 of	 a	 matrix,	 and	 also	 the	
overall	 movie	 transformed	 by	 matrix.	 This	 permits	 both	 simple	 operations	 (e.g.	 pixel	 doubling,	
correction	 of	 90º	 rotation)	 as	 well	 as	 more	 complex	 operations	 (shearing,	 arbitrary	 rotation,	 for	
example).	

Derived	specifications	may	over‐ride	this	default	composition	of	audio	and	video	with	more	powerful	
systems	(e.g.	MPEG‐4	BIFS).	

A.7 Random access

This	 section	 describes	 how	 to	 seek.	 Seeking	 is	 accomplished	 primarily	 by	 using	 the	 child	 boxes	
contained	in	the	sample	table	box.	If	an	edit	list	is	present,	it	must	also	be	consulted.	

If	you	want	to	seek	a	given	track	to	a	time	T,	where	T	is	in	the	time	scale	of	the	movie	header	box,	you	
could	perform	the	following	operations:	

1) If	the	track	contains	an	edit	list,	determine	which	edit	contains	the	time	T	by	iterating	over	the	
edits.	The	start	time	of	the	edit	in	the	movie	time	scale	must	then	be	subtracted	from	the	time	T	
to	generate	T',	the	duration	into	the	edit	in	the	movie	time	scale.	T'	is	next	converted	to	the	time	
scale	of	the	track's	media	to	generate	T''.	Finally,	the	time	in	the	media	scale	to	use	is	calculated	
by	adding	the	media	start	time	of	the	edit	to	T''.	

2) The	time‐to‐sample	box	for	a	track	indicates	what	times	are	associated	with	which	sample	for	
that	track.	Use	this	box	to	find	the	first	sample	prior	to	the	given	time.	

3) The	sample	that	was	located	in	step	1	may	not	be	a	sync	sample.	The	sync	sample	table	indicates	
which	samples	are	in	fact	random	access	points.	Using	this	table,	you	can	locate	which	is	the	first	
sync	sample	prior	to	the	specified	time.	The	absence	of	the	sync	sample	table	indicates	that	all	
samples	 are	 synchronization	points,	 and	makes	 this	problem	easy.	Having	 consulted	 the	 sync	
sample	table,	you	probably	wish	to	seek	to	whichever	resultant	sample	is	closest	to,	but	prior	to,	
the	sample	found	in	step	1.	

ISO/IEC 14496-12:2015(E)

176	 ©	ISO/IEC	2015	–	All	rights	reserved

	

4) At	this	point	you	know	the	sample	that	will	be	used	for	random	access.	Use	the	sample‐to‐chunk	
table	to	determine	in	which	chunk	this	sample	is	located.	

5) Knowing	which	chunk	contained	the	sample	in	question,	use	the	chunk	offset	box	to	figure	out	
where	that	chunk	begins.	

6) Starting	from	this	offset,	you	can	use	the	information	contained	in	the	sample‐to‐chunk	box	and	
the	sample	size	box	to	figure	out	where	within	this	chunk	the	sample	in	question	is	located.	This	
is	the	desired	information.	

A.8 Fragmented movie files

This	 section	 introduces	 a	 technique	 that	may	be	used	 in	 ISO	 files,	where	 the	 construction	of	 a	 single	
Movie	Box	in	a	movie	is	burdensome.	This	can	arise	in	at	least	the	following	cases:	

 Recording.	At	 the	moment,	 if	 a	 recording	application	crashes,	 runs	out	of	disk,	or	 some	other	
incident	happens,	after	it	has	written	a	lot	of	media	to	disk	but	before	it	writes	the	Movie	Box,	
the	recorded	data	is	unusable.	This	occurs	because	the	file	format	insists	that	all	metadata	(the	
Movie	Box)	be	written	in	one	contiguous	area	of	the	file.	

 Recording.	 On	 embedded	 devices,	 particularly	 still	 cameras,	 there	 is	 not	 the	 RAM	 to	 buffer	 a	
Movie	Box	for	the	size	of	the	storage	available,	and	re‐computing	it	when	the	movie	is	closed	is	
too	slow.	The	same	risk	of	crashing	applies,	as	well.	

 HTTP	fast‐start.	 If	 the	movie	 is	of	reasonable	size	(in	terms	of	 the	Movie	Box,	 if	not	time),	 the	
Movie	Box	can	take	an	uncomfortable	period	to	download	before	fast‐start	happens.	

The	basic	 'shape'	of	 the	movie	 is	set	 in	 initial	Movie	Box:	 	 the	number	of	 tracks,	 the	available	sample	
descriptions,	 width,	 height,	 composition,	 and	 so	 on.	 However	 the	 Movie	 Box	 does	 not	 contain	 the	
information	for	the	full	duration	of	the	movie;	in	particular,	it	may	have	few	or	no	samples	in	its	tracks.	

To	this	minimal	or	empty	movie,	extra	samples	are	added,	in	structure	called	movie	fragments.	

The	basic	design	philosophy	is	the	same	as	in	the	Movie	Box;	data	is	not	'framed'.	However,	the	design	is	
such	 that	 it	 can	 be	 treated	 as	 a	 'framing'	 design	 if	 that	 is	 needed.	 The	 structures	map	 readily	 to	 the	
Movie	Box,	so	an	fragmented	presentation	can	be	rewritten	as	a	single	Movie	Box.	

The	approach	 is	 that	defaults	are	set	 for	each	sample,	both	globally	(once	per	 track)	and	within	each	
fragment.	Only	those	fragments	that	have	non‐default	values	need	include	those	values.	This	makes	the	
common	case	—	regular,	repeating,	structures	—	compact,	without	disabling	the	incremental	building	
of	movies	that	have	variations.	

The	regular	Movie	Box	sets	up	the	structure	of	the	movie.	It	may	occur	anywhere	in	the	file,	though	it	is	
best	for	readers	if	it	precedes	the	fragments.	(This	is	not	a	rule,	as	trivial	changes	to	the	Movie	Box	that	
force	it	to	the	end	of	the	file	would	then	be	impossible).	This	Movie	Box:	

 must	represent	a	valid	movie	in	its	own	right	(though	the	tracks	may	have	no	samples	at	all);	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 177

	

 has	an	box	in	it	to	indicate	that	fragments	should	be	found	and	used;	

 is	used	to	contain	the	complete	edit	list	(if	any).	

Note	 that	 software	 that	 doesn't	 understand	 fragments	will	 play	 just	 this	 initial	movie.	 Software	 that	
does	understand	fragments	and	gets	a	non‐fragmented	movie	won't	scan	for	fragments	as	the	fragment	
indication	box	won't	be	found.	

ISO/IEC 14496-12:2015(E)

178	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Annex B	
(void)	

	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 179

	

Annex C	
(informative)	

Guidelines on deriving from this specification

C.1 Introduction

This	Annex	provides	informative	text	to	explain	how	to	derive	a	specific	file	format	from	the	ISO	Base	
Media	File	Format.	

ISO/IEC	14496‐12	 |	 ISO/IEC	15444‐12	 ISO	 Base	Media	 Format	 defines	 the	 basic	 structure	 of	 the	 file	
format.	 Media‐specific	 and	 user‐defined	 extensions	 can	 be	 provided	 in	 other	 specifications	 that	 are	
derived	from	the	ISO	Base	Media	File	Format.	

C.2 General Principles

C.2.1 General

A	number	of	existing	 file	 formats	use	 the	 ISO	Base	Media	File	Format,	not	 least	 the	MPEG‐4	MP4	File	
Format	 (ISO/IEC	14496‐14),	 and	 the	 Motion	 JPEG	 2000	 MJ2	 File	 Format	 (ISO/IEC	15444‐3).	 When	
considering	 a	 new	 specification	 derived	 from	 the	 ISO	 Base	 Media	 File	 format,	 all	 the	 existing	
specifications	should	be	used	both	as	examples	and	a	source	of	definitions	and	technology.	Check	with	
the	registration	authority	to	find	what	might	already	exist,	and	what	specifications	exist.	

In	particular,	if	an	existing	specification	already	covers	how	a	particular	media	type	is	stored	in	the	file	
format	 (e.g.	 MPEG‐4	 video	 in	 MP4),	 that	 definition	 should	 be	 used	 and	 a	 new	 one	 should	 not	 be	
invented.	 In	 this	way	specifications	which	share	 technology	will	also	share	 the	definition	of	how	that	
technology	is	represented.	

Be	as	permissive	as	possible	with	respect	to	the	presence	of	other	information	in	the	file;	indicate	that	
unrecognized	boxes	and	media	may	be	ignored	(not	“should	be	ignored”).	This	permits	the	creation	of	
hybrid	 files,	 drawing	 from	 more	 than	 one	 specification,	 and	 the	 creation	 of	 multi‐format	 players,	
capable	of	handling	more	than	one	specification.	

When	 layering	on	 this	 specification,	 it's	worth	observing	 that	 there	are	 some	characteristics	 that	 are	
intentionally	‘parameters’	to	the	lower	(Part	12)	specification,	that	need	to	be	specified.	Equally,	there	
are	some	characteristics	of	the	Part	12	file	 format	specification	that	are	internal	and	should	rarely	be	
discussed	by	other	specifications.	Of	course,	there	are	some	characteristics	in	a	grey	area	in	between.	

Derived	specifications	are	ideally	written	solely	 in	terms	of	the	parameters	of	the	Part	12	file	 format;	
what	a	sample	is,	what	its	timestamps	mean,	and	so	on.	Mentioning	specific	existing	boxes	in	a	derived	
specification	may	often	turn	out	to	be	an	error,	except	in	limited	cases	(e.g.	adding	a	user‐data	box,	or	an	
extension	box).	

ISO/IEC 14496-12:2015(E)

180	 ©	ISO/IEC	2015	–	All	rights	reserved

	

C.2.2 Base layer operations

It	should	be	possible	to	perform	some	operations	on	a	Part	12	file	without	knowing	anything	about	any	
potential	derived	specifications.	These	operations	might	include	the	obvious	reading	tracks,	finding	the	
data	and	timing	for	samples,	and	their	sample	description	and	track	type,	and	so	on.	This	might	be	done,	
for	example,	by	a	file‐format	inspector	or	general	library	like	the	reference	software.	

Less	obvious	are	a	class	of	manipulations	of	the	files:	

a)	 re‐interleaving	 the	 data;	making	 the	media	 data	 in	 time	 order,	 with	 the	 samples	 for	 various	
tracks	grouped	into	chunks	of	a	sensible	size,	with	the	chunks	interleaved;	

b)	 making	files	that	use	data	references	self‐contained,	by	copying	the	data	from	external	files	into	
the	new	file;	

c)	 removing	free	space	atoms	and	compacting	the	atom	structure;	
d)	 removing	 data	 from	 ‘mdat’	 atoms	 that	 appears	 to	 be	 un‐referenced	 by	 tracks	 or	 meta‐data	

atoms;	
e)	 removing	sample	entries	that	have	no	associated	samples;	
f)	 removing	sample	groups	that	have	no	associated	samples;	
g)	 extracting	 some	 tracks	 and	 making	 a	 new	 file	 with	 just	 those	 (e.g.	 an	 audio	 track	 from	 an	

audio/video	presentation);	
h)	 inserting,	or	removing,	movie	fragments,	or	re‐fragmenting	a	movie.	

This	list	is	not	exhaustive,	of	course.	

C.3 Boxes

You	 can	 add	 boxes	 to	 the	 file	 format,	 but	 be	 careful	 about	 how	 they	 interact	 with	 other	 boxes.	 In	
particular,	if	they	‘cross‐link’	into	existing	boxes,	you	might	not	be	able	to	mark	such	files	as	compliant	
with	Part	12.	

You	must	register	all	new	boxes,	except	those	using	the	‘uuid’	type.	Likewise,	you	should	register	codec	
(sample	 entry)	 names,	 brands,	 track	 reference	 types,	 handlers	 (media	 types),	 group	 types,	 and	
protection	scheme	types.	It	really	is	a	bad	idea	to	use	one	of	these	without	registration,	as	collisions	may	
occur	–	or	someone	else	may	register	the	same	identifier	with	a	different	meaning.	

You	should	not	write	a	box	using	the	‘UUID	escape’	(the	reserved	ISO	UUID	pattern	0xXXXXXXXX‐0011‐
0010‐8000‐00AA00389B71,	where	the	four‐character	code	replaces	the	X’s)	if	a	simple	four‐character‐
code	can	be	used,	and	ideally	you	shouldn’t	design	to	use	a	UUID	box;	it’s	better	to	place	your	data	in	
known	‘expansion	points’	of	the	file	format	if	at	all	possible,	or	register	a	new	box	type	if	really	needed.	

Don’t	forget	that	all	data	in	ISO	files	must	be,	or	be	contained	in,	boxes.	You	can	introduce	a	signature,	
but	it	must	‘look	like’	a	box.	

Do	not	require	that	any	existing	or	new	boxes	you	define	be	in	a	particular	position,	if	at	all	possible.	For	
example,	the	existing	JPEG	2000	specifications	require	a	signature	box	and	that	it	be	first	in	the	file.	If	
another	 specification	 also	 defines	 a	 signature	 box	 and	 also	 requires	 that	 it	 be	 first,	 then	 a	 file	
conformant	to	both	specifications	cannot	be	constructed.	

It	must	 be	 possible	 to	 ‘walk’	 the	 top‐level	 of	 a	 file	 by	 finding	 box	 lengths.	 Don’t	 forget	 that	 ‘implied	
length’	is	permitted	at	file	level.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 181

	

Unless	absolutely	unavoidable,	boxes	should	contain	either	data	(e.g.	in	fields),	or	other	boxes,	but	not	
both.	 All	 boxes	 containing	 data	 should	 be	 a	 full	 box	 to	 allow	 later	 changes	 to	 syntax	 and	 semantics.	
Boxes	containing	other	boxes	are	known	as	container	boxes,	 and	are	normally	a	plain	 (non‐full)	box,	
since	their	semantics	will	never	change	if	they	are	documented	to	contain	only	boxes.	

C.4 Brand Identifiers

C.4.1 Introduction

This	section	covers	the	use	of	brand	identifiers	in	the	file‐type	box,	including:	
- Introduction	of	a	new	brand.	
- Player’s	behaviour	depending	on	the	brand.	
- Setting	of	the	brand	on	the	creation	of	the	ISO	Base	Media	file.	

Brands	identify	a	specification	and	make	a	simple	set	of	statements:	
a)	 the	file	conforms	to	all	requirements	of	the	identified	specification;	
b)	 the	file	contains	nothing	contrary	to	the	identified	specification;	
c)	 a	 reader	 implementing	 potentially	 that	 single	 specification	 may	 read,	 interpret,	 and	 possibly	

present	the	file,	ignoring	data	it	does	not	recognize.	

Specifications	should	therefore	say	(if	they	need	a	brand)	“the	brand	that	identifies	files	conformant	to	
this	specification	is	XXXX”,	and	register	the	brand.	

C.4.2 Usage of the Brand

In	order	to	identify	the	specifications	to	which	the	file	complies,	brands	are	used	as	identifiers	in	the	file	
format.	These	brands	are	set	win	the	File	Type	Box.	

For	example,	a	brand	might	indicate:	
(1)	the	codecs	that	may	be	present	in	the	file,	
(2)	how	the	data	of	each	codec	is	stored,	
(3)	constraints	and	extensions	that	are	applied	to	the	file.	

New	brands	may	be	registered	if	it	is	necessary	to	make	a	new	specification	that	is	not	fully	conformant	
to	the	existing	standards.	For	example,	3GPP	allows	using	AMR	and	H.263	in	the	file	format.	Since	these	
codecs	were	not	supported	in	any	standards	at	that	time,	3GPP	specified	the	usage	of	the	SampleEntry	
and	template	fields	in	the	ISO	Base	Media	Format	as	well	as	defining	new	boxes	to	which	these	codecs	
refer.	Considering	that	the	file	format	is	used	more	widely	in	the	future,	it	is	expected	that	more	brands	
will	be	needed.	

Brands	are	not	additive;	 they	stand	alone.	You	cannot	say:	 “this	brand	 indicates	 that	 support	 for	Y	 is	
also	required”	because	the	‘also’	has	no	referent.	

Systems	 that	 re‐write	 files	 should	 remove	 brands	 that	 they	 do	 not	 recognize,	 as	 they	 do	 not	 know	
whether	the	file	still	conforms	to	that	brand’s	requirements	(e.g.	re‐interleaving	a	file	may	take	it	out	of	
conformance	with	a	specification	that	requires	a	certain	style	of	interleaving).	

ISO/IEC 14496-12:2015(E)

182	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Note	that	the	major	brand	usually	implies	the	file	extension,	which	in	turn	implies	the	MIME	type.	But	
these	are	not	rules.	In	addition,	when	serving	under	a	MIME	type	do	not	forget	that	MIME	types	can	take	
parameters,	and	the	list	of	compatible	brands	would	often	be	useful	to	the	receiving	system.	

C.4.3 Introduction of a new brand

A	new	brand	 can	be	defined	 if	 conformance	 to	 a	new	 specification	must	 be	 indicated.	This	 generally	
means	that	for	the	definition	of	a	new	brand	at	least	one	of	the	following	conditions	should	be	satisfied:	

1.	 Use	of	a	codec	that	is	not	supported	in	any	existing	brands.	

2.	 Use	more	than	one	codec	in	a	combination	that	is	not	supported	in	any	existing	brands.	In	addition,	
the	playback	of	the	file	is	allowed	only	when	decoding	of	all	the	media	in	the	file	is	supported	by	the	
player.	

3.	 Use	constraints	and/or	extensions	(Boxes,	template	fields,	etc.)	that	are	user‐specific.	

However,	the	file	format	contains	both	a	major_brand	field	and	a	compatible_brands	array.	These	fields	
are	owned	by	the	file	author	and	the	part	12	specification.	Do	not	write	a	specification	that	talks	about	
these	fields,	merely	about	brands	and	what	they	mean.	In	particular,	do	not	claim	the	major_brand	field	
(“files	 conformant	 to	 this	 specification	must	 set	 the	major_brand	 to	 XXXX”)	 as	 a	 file	 could	 never	 be	
conformant	to	two	such	specifications	written	that	way,	and	you	also	block	someone	also	from	deriving	
a	 specification	 from	 yours.	 However,	 brands	 that	 are	 only	 permitted	 as	 compatible	 brands	 may	 be	
defined.	

Brands	can	be	used	as	a	tracer,	however.	It’s	perfectly	legal	to	have	a	brand	which	has	no	requirements,	
and	 is	 placed	 in	 a	 file	 as	 an	 ‘I	was	 there’	 point	 (or	 strictly	 “this	 brand	 requires	 that	 the	 file	was	 last	
written	by	ZZZZ”).	

C.4.4 Player Guideline

If	more	 than	 one	 brand	 is	 present	 in	 the	 list	 of	 the	 compatible_brands,	 and	 one	 or	more	 brands	 are	
supported	 by	 the	 player,	 the	 player	 shall	 play	 those	 aspects	 of	 the	 file	 that	 comply	 with	 those	
specifications.	In	this	case,	the	player	may	not	be	able	to	decode	unsupported	media.	

C.4.5 Authoring Guideline

If	 the	 author	 wants	 to	 create	 a	 file	 that	 complies	 with	 more	 than	 one	 specification,	 the	 following	
considerations	apply:	

1.	 There	must	be	nothing	contrary	to	the	specification	identified	by	a	brand	within	the	file.	For	
example,	if	a	specification	requires	that	files	be	self‐contained,	then	the	brand	indication	of	that	
specification	must	not	be	used	on	non‐self‐contained	files.	

2.	 If	 the	author	is	satisfied	that	a	player	compliant	with	only	one	of	the	specifications	play	only	
that	media	compliant	with	that	specification,	then	that	brand	may	be	indicated.	

3.	 If	the	author	requires	that	the	media	from	more	than	one	specification	be	played,	then	a	new	
brand	would	be	needed	as	this	represents	a	new	conformance	requirement	for	the	player.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 183

	

C.4.6 Example

In	this	section,	we	take	the	example	case	when	a	new	brand	can	be	defined.	

First	of	all,	we	explain	about	the	two	currently	existing	brands.	 If	 the	brand	 ‘3gp5’	 is	 in	the	list	of	the	
compatible_brands,	it	indicates	that	the	file	contains	the	media	defined	in	3GPP	TS	26.234	(Release	5)	in	
the	way	specified	by	the	standard.	For	example,	the	file	of	‘3gp5’	brand	may	contain	H.263.	Likewise,	if	
the	 brand	 ‘mp42’	 is	 in	 the	 list	 of	 the	 compatible_brands,	 it	 indicate	 that	 the	 file	 contains	 the	media	
defined	in	the	ISO/IEC	14496‐14	in	the	specified	way.	For	example,	the	file	of	‘mp42’	brand	may	contain	
MP3.	However,	MP3	is	not	supported	in	‘3gp5’	brand.	

Given	that	the	file	contains	H.263	and	MP3,	and	has	‘3gp5’	and	‘mp42’	as	the	compatible_brands.	If	the	
player	complies	only	with	‘3gp5’	and	does	not	support	MP3,	recommended	behaviour	of	the	player	is	to	
play	 only	 H.263.	 If	 the	 content’s	 author	 does	 not	 expect	 such	 behaviour,	 a	 new	 brand	 is	 defined	 to	
indicate	that	both	H.263	and	MP3	are	supported	in	the	file.	By	specifying	the	newly	defined	brand	in	the	
list	of	the	compatible_brands,	 it	can	prevent	the	above	behaviour	and	the	file	is	played	only	when	the	
player	supports	both	H.263	and	MP3.	

C.5 Storage of new media types

There	are	two	choices	in	the	definition	of	how	a	new	media	type	should	be	stored.	

First,	if	MPEG‐4	systems	constructs	are	desired	or	acceptable,	then:	
a)	 a	new	ObjectTypeIndication	should	be	requested	and	used;	
b)	 the	decoderspecificinformation	for	this	codec	should	be	defined	as	an	MPEG‐4	descriptor;	
c)	 the	access	unit	format	should	be	defined	for	this	media.	

The	media	then	uses	the	MPEG‐4	code‐points	in	the	file	format;	for	example,	a	new	video	codec	would	
use	a	sampleentry	of	type	‘mp4v’.	

If	the	MPEG‐4	systems	layer	is	not	suitable	or	otherwise	not	desired,	then:	
a)	 a	new	sampleentry	four‐character	code	should	be	requested	and	used;	
b)	 any	additional	information	needed	by	the	decoder	should	be	defined	as	boxes	to	be	stored	

within	the	sampleentry;	
c)	 the	file‐format	sample	format	should	be	defined	for	this	media.	

Note	that	in	the	second	case,	the	registration	authority	will	also	allocate	an	objecttypeindication	for	use	
in	MPEG‐4	systems.	

C.6 Use of Template fields

Template	fields	are	defined	in	the	file	format.	If	any	are	used	in	a	derived	specification,	the	use	must	be	
compatible	with	the	base	definition,	and	that	use	explicitly	documented.	

ISO/IEC 14496-12:2015(E)

184	 ©	ISO/IEC	2015	–	All	rights	reserved

	

C.7 Tracks

C.7.1 Data Location

A	track	is	a	timed	sequence	of	samples;	each	sample	is	defined	by	its	data	(the	bytes	it	contains),	their	
length	 and	 location.	 The	 length	 and	 data	 of	 a	 sample	 are	 external	 parameters	 to	 the	 file	 format;	 the	
location	of	the	bytes	is	not.	

The	exact	way	that	the	data	is	stored	is	internal	to	the	Part	12	file	format.	When	defining	what	a	sample	
in	your	format	is,	you	should	define	the	length	and	the	data	of	a	sample.	

You	should	not	mention	the	 following	boxes,	however,	as	the	way	that	they	are	structured	 is	open	to	
change,	and	the	information	that	they	store	may	be	stored	in	other	ways	(e.g.	sample	size	information	
may	be	in	an	stsz	box,	an	stz2	box,	or	a	movie	fragment):	

	 sample	size	(stsz),	compact	sample	size(stz2)	

Samples	are,	 in	fact,	stored	in	contiguous	runs	of	samples	for	one	track;	these	runs	are	called	chunks,	
and	 it	 is	 chunks	 from	 different	 tracks	 that	 are	 interleaved.	 But	 files	 may	 be	 re‐interleaved	 or	 re‐
chunked;	the	following	boxes	are	about	how	chunking	is	done:	

	 chunk	offsets	(stco	or	co64),	sample‐to‐chunk	(stsc)	

Most	critically,	locating	data	in	a	Part	12	file	must	be	done	through	these	boxes	(or	their	equivalent	in	
movie	fragments).	The	media	data	box	(‘mdat’)	is	merely	one	possible	location,	and	looked	at	by	itself,	it	
can	 only	 be	 considered	 an	 un‐ordered	 bag	 of	 un‐identifiable	 bits.	 There	 is	 no	 assurance	 that	 the	
desirable	 material	 in	 a	 media‐data	 box	 is	 the	 only	 data	 in	 the	 box	 or	 in	 any	 particular	 order,	 and,	
especially	 if	 data	 references	 are	 used,	 there	 is	 no	 assurance	 that	 any	 particular	 sample	 is	 even	 in	 a	
media‐data	 box	 at	 all.	 Mentioning	 the	 media‐data	 (‘mdat’)	 box	 in	 a	 derived	 specification	 is	 almost	
certainly	 a	 mistake,	 and	 attempting	 to	 define	 (or	 assume)	 its	 structure	 is	 usurping	 the	 Part	 12	
specification,	and	is	an	error.	

It	 is	perfectly	permissible	 to	require	a	certain	style,	duration,	or	size	of	 interleaving	 in	an	 integration	
specification	(“this	specification	requires	that	the	 file	be	self‐contained,	and	that	the	media‐data	be	in	
decoding	time	order,	interleaved	on	a	granularity	of	no	greater	than	one	second”).	

C.7.2 Time

Similarly,	 samples	 are	 parameterized	 in	 time	 in	 the	 file	 format	 by	 their	 decoding	 timestamp,	 and	
optionally	 by	 their	 composition	 timestamp.	 You	 should	 define	 what	 these	 mean	 for	 your	 media.	
However,	the	way	that	these	are	stored	is	again	internal	to	the	part	12	file	format.	

You	should	not	mention	the	 following	boxes,	however,	as	the	way	that	they	are	structured	 is	open	to	
change,	and	the	information	that	they	store	may	be	stored	in	other	ways:	

	 time‐to‐sample	box	(stts),	composition	offsets	(ctts)	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 185

	

Likewise,	the	time‐structure	effect	of	edits	should	be	preserved	by	the	file	format,	but	there	a	Part	12	
file	simplifier	may,	 for	example,	merge	two	adjacent	edits	that	in	fact	belong	together	(e.g.	two	empty	
edits,	or	an	edit	that	selects	time	A‐B	followed	by	one	that	selects	B‐C).	

C.7.3 Media Types

There	 are	 a	 number	 of	media	 types	 in	 the	 Part	 12	 specification:	 video,	 audio,	meta‐data,	 and	 so	 on.	
These	 are	 represented	 by	 track	 handler	 types	 and	 by	media‐specific	media	 headers.	 It	 is	 possible	 to	
register	new	media	handlers,	but	this	is	rarely	required.	It	might	be	needed,	for	example,	if	a	track	type	
were	 needed	 for	 say,	 laboratory	 instrument	 traces,	 or	 for	 a	 ‘timed	 aroma’	 track.	 The	 registration	
authority	 should	 also	 be	 checked;	 the	 needed	 handler	 might	 be	 already	 defined	 in	 another	 derived	
specification.	

C.7.4 Coding Types

The	name	of	a	sample	entry	identifies	the	coding	format	used.	This	is	one	of	the	principal	ways	that	the	
Part	12	specification	is	parameterized;	AVC	(MPEG‐4	Part	10)	uses	‘avc1’	for	example,	as	a	sample	entry	
type.	Defining	 this	 name	 for	 a	 codec,	 and	 registering	 it,	 and	 then	 defining	what	 extra	 boxes	 are	 in	 a	
sample	entry	for	this	codec,	are	primary	ways	that	the	Part	12	format	is	used.	You	should	define	these	
for	your	coding	system.	Note	that	technically	the	coding	type	is	‘scoped’	by	the	media	type	(though	we	
try	not	to	define	the	same	four‐character‐code	as	two	different	codecs	in	two	media	types,	such	as	video	
and	audio,	in	order	to	avoid	confusion).	

C.7.5 Sub-sample information

The	 part	 12	 specification	 can	 carry	 information	 about	 ‘sub‐sample’	 boundaries	 for	 each	 sample.	
However,	the	definition	of	what	a	sub‐sample	is,	is	specific	to	a	coding	system.	You	might	wish	to	define	
it	when	defining	how	a	coding	system	is	stored.	

C.7.6 Sample Dependency

The	part	12	 format	allows	you	to	 identify	some	of	 the	decoding	dependency	 information	for	a	coding	
system.	In	particular,	you	should	identify	what	constitutes	a	valid	‘sync’	or	random	access	point	(points	
from	which	decoding	may	be	started).	They	can	be	marked	in	the	file	format	(in	the	sync	sample	table,	
or	by	flags	in	movie	fragments).	How	sync	sample	are	marked	should	be	of	less	concern.	

Similarly,	it	is	possible	to	indicate	which	samples:	
a)	 depend	on	others,	or	can	be	decoded	independently;	
b)	 are	depended	on	by	others,	or	can	be	discarded	without	affecting	decoding;	
c)	 contain	multiple	encodings	of	the	same	information,	possibly	with	different	dependencies	(are	

redundantly	coded).	

For	most	coding	systems	the	meanings	of	these	are	self‐evident	and	do	not	need	spelling	out;	however,	
they	may	need	explicit	statement	for	some	coding	systems.	

C.7.7 Sample Groups

Sample	 groups	 provide	 another	 way	 to	 describe	 samples	 and	 their	 characteristics.	 To	 use	 sample	
groups,	you	can	define	a	group	type,	and	then	how	a	group	is	defined	(the	group	description).	The	file	
format	can	then	map	a	given	sample	 to	a	single	definition	of	a	group	of	any	given	type.	Defining	new	

ISO/IEC 14496-12:2015(E)

186	 ©	ISO/IEC	2015	–	All	rights	reserved

	

grouping	types	and	the	way	that	they	are	parameterized	is	an	important	way	to	parameterize	the	file	
format.	

C.7.8 Track-level

Tracks	can	be	associated	with	each	other	in	the	file	format,	in	two	important	ways.	Track	references	are	
a	typed	link	indicating	a	reference	or	dependency	of	one	track	to	or	on	another	(e.g.	a	meta‐data	track	
that	describes	a	media	 track	has	a	dependency	on	that	media	 track,	as	 it	makes	no	sense	without	 it).	
New	track	reference	types	can	be	registered	and	used	in	derived	specifications.	

Similarly	tracks	may	be	grouped	into	sets	of	alternatives,	where	the	reader	is	expected	to	be	able	to	pick	
one	that	suits	it	(e.g.	on	the	basis	of	supported	codecs,	bit‐rates,	screen	sizes,	and	so	on).	3GPP	26.234	
has	taken	this	concept	and	included	user‐data	(a	permitted	extension)	to	give	a	hint	as	to	why	a	track	is	
a	member	of	a	group	(‘I	contain	a	different	codec’).	

Lastly,	tracks	may	be	enabled	or	disabled	in	the	file	format.	Disabled	tracks	might	be	used,	for	example,	
for	optional	features	(e.g.	closed	captions).	

C.7.9 Protection

Similarly	to	the	parameterization	of	coding	schemes	by	using	the	same	entry	type,	and	extra	boxes	in	
the	 sample	entry,	 the	part	12	 format	allows	protection	 to	be	applied	 to	 tracks,	parameterized	by	 the	
scheme	type	and	the	contents	of	the	scheme	information	box.	The	scheme	information	box	is	‘owned’	by	
the	scheme	 type	–	 to	 the	extent	 that	 contained	boxes	 there	do	not	need	 to	be	registered,	as	 they	are	
already	scoped	by	the	scheme	type.	

Protection	 can	 be	 subtle;	 many	 encryption	 systems,	 for	 example,	 ‘chain’	 together.	 It’s	 tempting	 to	
encrypt	‘the	contents	of	the	mdat	box’,	but	that	is	very	badly	non‐resilient	to	minor	changes	to	the	file.	
It’s	also	tempting	to	protect	chunks	–	they	do	seem	to	represent	contiguous	runs	of	media	data	for	one	
track.	But	again,	re‐chunking	the	file	may	break	the	ability	to	de‐protect.	

Instead,	consider	modifying	the	sample,	or	introducing	time‐parallel	meta‐data,	or	use	sample	groups,	
to	 introduce	 enough	 context	 to	 enable	 both	 file‐based	 manipulation	 and	 decryption.	 Time‐parallel	
meta‐data	would	be	in	a	track,	and	a	track	reference	should	be	used	to	indicate	that	the	protected	data	
depends	on	the	parallel	encryption‐context	track.	

C.8 Construction of fragmented movies

When	constructing	a	fragmented	file	for	playback,	there	are	some	recommendations	for	structuring	the	
content	which	would	optimize	playback	and	random	access.	The	recommendations	are	as	follows:	

 The	file	should	consist	of	boxes	in	the	following	order:	
‐ 'ftyp'	
‐ 'moov'	
‐ pair	of	'moof'	and	'mdat'	(arbitrary	number)	
‐ 'mfra'	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 187

	

 A	'moof'	box	consists	of	at	most	one	'traf'	for	each	media.	When	the	file	contains	a	single	video	track	
and	a	single	audio	track,	the	'moof'	will	contain	two	'traf',	one	for	the	video	and	one	for	the	audio.	

 For	 video,	 random	accessible	 samples	 are	 stored	 as	 the	 first	 sample	of	 each	 'traf'.	 In	 the	 case	of	
gradual	 decoder	 refresh,	 a	 random	 accessible	 sample	 and	 the	 corresponding	 recovery	 point	 are	
stored	 in	 the	 same	movie	 fragment.	 For	 audio,	 samples	 having	 the	 closest	 presentation	 time	 for	
every	video	random	accessible	sample	are	stored	as	the	first	sample	of	each	'traf'.	Hence,	the	first	
samples	of	each	media	in	the	'moof'	have	the	approximately	equal	presentation	times.	

 First	(random	accessible)	samples	are	recorded	in	the	'mfra'	for	both	video	and	audio.	

 All	samples	in	‘mdat’	are	interleaved	with	an	appropriate	interleave	depth.	

The	offset	and	the	 initial	presentation	time	of	every	 'moof'	are	given	 in	 the	 'mfra'	 for	both	audio	and	
video.	

The	player	will	 load	the	 'moov'	and	 'mfra'	 initially,	and	hold	 them	in	memory	during	playback.	When	
random	access	is	needed,	the	player	will	search	'mfra'	in	order	to	find	the	random	access	point	having	
the	closest	presentation	time	for	the	indicated	time.	

Since	 the	 first	 sample	 in	 the	 'moof'	 is	 random	 accessible,	 the	 player	 can	 directory	 jump	 in	 on	 the	
random	access	point.	The	player	can	read	the	'moof'	of	the	random	access	point	from	the	beginning.	The	
subsequent	'mdat'	starts	from	the	random	accessible	sample.	As	such,	a	two‐step	seeking	would	not	be	
necessary	for	random	access.	

Note	that	an	‘mfra’	box	is	optional,	and	might	never	occur	in	a	given	file.	

C.9 Meta-data

Much	 of	 what	 is	 said	 above	 about	 tracks	 and	 their	 data	 applies	 to	 meta‐data	 items,	 except	 that,	 of	
course,	 meta‐data	 items	 have	 no	 time	 structure.	 In	 particular,	 the	 division	 of	 items	 into	 extents	 –	
allowing	them	to	be	interleaved	–	is	again,	a	property	of	the	file	format.	It	would	be	a	mistake	to	design	
some	new	support	based	on	extent	structure.	

C.10 Registration

Register!	 If	 in	doubt,	contact	 the	registration	authority	at	http://www.mp4ra.org.	Registration	 is	 free,	
and	 so	 is	 the	 advice	 and	 help	 you	 will	 get.	 Not	 registering	 means	 that	 your	 use	 may	 conflict	 with	
someone	 else,	 and	 your	 use	 is	 also	 un‐traceable	 and	 therefore	 effectively	 undocumented.	 The	 RA	 is	
aware	of	many	brands	(at	 least)	being	cheerfully	 invented	and	used,	but	not	registered.	These	people	
are	‘flying	dangerously’;	don’t	join	them.	

C.11 Guidelines on the use of sample groups, timed metadata tracks, and sample
auxiliary information

The	ISO	Base	Media	File	Format	contains	three	mechanisms	for	timed	metadata	that	can	be	associated	
with	 particular	 samples:	 sample	 groups,	 timed	 metadata	 tracks,	 and	 sample	 auxiliary	 information.	

ISO/IEC 14496-12:2015(E)

188	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Derived	specification	may	provide	similar	 functionality	with	one	or	more	of	 these	 three	mechanisms.	
This	Clause	provides	guidelines	for	derived	specifications	to	choose	between	the	three	mechanisms.	

Sample	 groups	 and	 timed	 metadata	 are	 less	 tightly	 coupled	 to	 the	 media	 data	 and	 are	 typically	
‘descriptive’,	whereas	sample	auxiliary	information	might	be	required	for	decoding.	

Sample	auxiliary	information	is	only	 intended	for	use	where	the	information	is	directly	related	to	the	
sample	on	a	one‐to‐one	basis,	and	 is	required	 for	 the	media	sample	processing	and	presentation.	For	
general	content,	the	existing	solution	of	additional	tracks	should	be	used.	Sample	auxiliary	information	
and	sample	media	data	are	both	addressed	using	byte	pointers	and	size	information,	and	so	when	the	
same	bytes	form	the	data	for	more	than	one	sample	it	may	be	possible	to	share	that	data	by	re‐using	the	
same	byte	pointer.	

Sample	groups	may	be	useful	in	the	following	occasions.	

- When	 several	 samples	 share	 the	 same	 metadata	 values,	 it	 is	 space‐efficient	 to	 specify	 the	
metadata	 in	 a	 Sample	 Group	 Description	 box	 and	 the	 association	 of	 samples	 to	 metadata	 in	
Sample	to	Group	box(es).	

- As	 the	 sample	 group	 information	 is	 stored	 in	 Movie	 box	 and	 Movie	 Fragment	 box(es),	 they	
provide	an	index	to	the	data	in	the	Media	Data	boxes.	No	data	from	the	Media	Data	boxes	need	
to	 be	 fetched,	which	may	 therefore	 reduce	 disk	 accesses	when	 compared	 to	 timed	metadata	
tracks	and	sample	auxiliary	information.	

Timed	metadata	tracks	may	be	useful	in	the	following	occasions.	

- The	same	 timed	metadata	 track	may	be	associated	 to	more	 than	one	 track.	 In	other	words,	 a	
timed	metadata	 track	may	 be	more	 independent	 of	 the	 content	 of	 the	 associated	 tracks	 than	
sample	groups	and	sample	auxiliary	information.	

- It	 may	 be	 easier	 to	 append	 a	 file	 with	 a	 timed	 metadata	 track	 than	 with	 sample	 auxiliary	
information	 or	 sample	 groups,	 because	 sample	 auxiliary	 information	 and	 Sample	 to	 Group	
boxes	have	to	reside	in	the	same	Track	Fragment	box	as	the	associated	samples,	whereas	timed	
metadata	 may	 reside	 in	 its	 own	 Movie	 Fragment	 box(es).	 For	 example,	 it	 may	 be	 easier	 to	
provide	an	additional	subtitle	track	as	timed	metadata	than	use	sample	auxiliary	information.	

- The	duration	of	 timed	metadata	samples	need	not	match	 the	duration	of	associated	media	or	
hint	 samples.	 In	 cases	 where	 the	 duration	 of	 timed	 metadata	 samples	 spans	 over	 multiple	
associated	 media	 or	 hint	 samples,	 timed	 metadata	 tracks	 may	 be	 more	 space‐efficient	 than	
sample	auxiliary	information.	

Sample	auxiliary	information	may	be	useful	in	the	following	occasions.	

- The	data	associated	with	samples	is	changing	sufficiently	frequently	such	that	specifying	sample	
groups	may	not	be	justified	from	storage	space	point	of	view.	

- The	amount	of	data	associated	with	samples	is	such	large	that	its	carriage	within	the	Movie	box	
or	 Movie	 Fragment	 box	 (as	 required	 by	 sample	 grouping)	 would	 cause	 disadvantages.	 For	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 189

	

example,	in	progressive	downloading,	it	may	be	beneficial	to	make	the	size	of	Movie	box	small	in	
order	to	keep	the	initial	buffering	time	small.	

- When	each	sample	is	associated	with	metadata,	sample	auxiliary	information	provides	a	more	
straightforward	association	of	the	auxiliary	information	to	samples	when	compared	to	the	same	
functionality	with	 timed	metadata	 tracks,	which	 typically	 requires	 resolving	 sample	decoding	
time	to	establish	the	association	between	timed	metadata	samples	and	media/hint	samples.	

ISO/IEC 14496-12:2015(E)

190	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Annex D	
(informative)	

Registration Authority

D.1 Code points to be registered

The	 code‐points	 within	 the	 file	 format	 are	 all	 32‐bit	 fields,	 normally	 four	 printable	 characters	
(commonly	known	as	four‐character‐codes	or	4CCs).	An	objecttype	identifier	is	an	8‐bit	integer.	

The	code‐points	that	may	be	registered	are:	

1) File	format	box	identifiers.	Note	that	in	some	specifications	boxes	were	known	as	atoms.	Note	
that	the	introduction	of	new	atom	types	is	discouraged;	in	general	other	extensibility	features	of	
the	file	format	should	be	used	if	possible.	

2) File	format	track	type	identifiers.	A	pair	of	identifiers	is	usually	used	here,	to	identify	the	track	
type	 (audio,	 video,	 etc.)	 and,	 if	 required,	 a	media‐specific	 header	 atom	 (video	media	 header,	
etc.).	 It	 is	expected	that	the	need	for	new	track	types	is	rare,	however;	most	media	should	fall	
into	existing	types	(e.g.	video	codecs	should	use	video	tracks,	hint	protocols	use	hint	tracks,	and	
so	on).	

3) File	format	sample	description	and	sample	format	identifiers	(also	known	as	codec	names).	This	
includes	audio	and	video	codecs,	and	also	protocol	identifiers	for	hint	tracks.	Any	registration	of	
a	new	sample	format	will	automatically	be	issued	an	object‐type	identifier	also	(see	below),	thus	
making	 the	 identification	 of	 the	 carriage	 of	 this	 format	 within	 the	 MPEG‐4	 systems	 object	
descriptor	framework	possible.	

4) File	format	track	reference	identifiers.	Dependencies	between	tracks	are	typed	in	the	file	format	
(for	example,	hint	tracks	depend	on	the	media	tracks	they	hint,	using	a	track	dependency	of	type	
‘hint’).	

5) This	 specification	 includes	 a	 ‘file	 type’	 atom	 which	 includes	 a	 list	 of	 ‘brands’	 which	 identify	
which	specifications	the	file	is	conformant	to.	Bodies	defining	standards	based	on	the	structural	
definition	 of	 this	 file	 format	would	 normally	 use	 a	 new	 brand	 to	 identify	 files	 conformant	 to	
their	specification.	Any	registration	of	a	new	brand	must	specify	the	precise	specification	which	
the	brand	identifies.	

6) Within	the	MPEG‐4	object	descriptor	framework,	the	objecttype	value	is	used	to	identify	the	
format	of	 the	streams.	An	objecttype	 identifier	may	be	requested	 independently	of	 the	 file	
format	identifiers	above.	

7) Sample	groups	associate	typed	information	with	groups	of	samples.	The	grouping	type	may	be	
registered.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 191

	

8) Both	media	 and	metadata	 can	be	protected	and	 the	protection	 scheme	used	 identified	with	a	
registered	protection	scheme	type.	

These	code‐points	are	referred	to	in	the	rest	of	this	annex	as	registered	identifiers,	abbreviated	as	RIDs.	

D.2 Procedure for the request of an MPEG-4 registered identifier value

Requesters	of	 an	MPEG‐4	code‐points	as	detailed	above	value	 to	 identify	 a	private	data	 format	 	 shall	
apply	 to	 the	 Registration	 Authority.	 Registration	 forms	 shall	 be	 available	 from	 the	 Registration	
Authority.	The	requester	shall	provide	 the	 information	specified	 in	D.4.	Companies	and	organizations	
are	eligible	to	apply.	

D.3 Responsibilities of the Registration Authority

The	primary	responsibilities	of	the	Registration	Authority	administrating	the	registration	of	the	private	
data	format	identifiers	are	outlined	in	this	annex;	certain	other	responsibilities	may	be	found	in	the	JTC	
1	Directives.	The	Registration	Authority	shall:	

a) implement	 a	 registration	 procedure	 for	 application	 for	 a	 unique	 RID	 in	 accordance	with	 the	
JTC	1	Directives;	

b) receive	and	process	the	applications	for	allocation	of	an	identifier	from	application	providers;	

c) ascertain	which	applications	received	are	in	accordance	with	this	registration	procedure,	and	to	
inform	the	requester	within	30	days	of	receipt	of	the	application	of	their	assigned	RID;	

d) inform	application	providers	whose	request	is	denied	in	writing	with	30	days	of	receipt	of	the	
application,	and	to	consider	resubmissions	of	the	application	in	a	timely	manner;	

e) maintain	an	accurate	register	of	the	allocated	identifiers.	Revisions	to	format	specifications	shall	
be	accepted	and	maintained	by	the	Registration	Authority;	

f) make	 the	contents	of	 this	 register	available	upon	request	 to	National	Bodies	of	 JTC	1	 that	are	
members	of	ISO	or	IEC,	to	liaison	organizations	of	ISO	or	IEC	and	to	any	interested	party;	

g) maintain	 a	 data	 base	 of	 RID	 request	 forms,	 granted	 and	 denied.	 Parties	 seeking	 technical	
information	on	the	format	of	private	data	which	has	a	RID	shall	have	access	to	such	information	
which	is	part	of	the	data	base	maintained	by	the	Registration	Authority;	

h) report	 its	 activities	 annually	 to	 JTC	1,	 the	 ITTF,	 and	 the	 SC	29	 Secretariat,	 or	 their	 respective	
designees;	and	

i) accommodate	the	use	of	existing	RIDs	whenever	possible.	

D.4 Contact information for the Registration Authority

Apple	Computer	Inc.	

One	Infinite	Loop,	M/S	301‐4B	

ISO/IEC 14496-12:2015(E)

192	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Cupertino,	California	95014	
USA	
E‐mail:	mp4reg@group.apple.com	
Web:	http://www.mp4ra.org/	

D.5 Responsibilities of Parties Requesting a RID

The	party	requesting	a	format	identifier	shall:	

a) apply	using	the	Form	and	procedures	supplied	by	the	Registration	Authority;	

b) include	 a	 description	 of	 the	 purpose	 of	 the	 registered	 identifier,	 and	 the	 required	 technical	
details	as	specified	in	the	application	form;	

c) provide	contact	information	describing	how	a	complete	description	can	be	obtained	on	a	non‐
discriminatory	basis;	

d) agree	to	institute	the	intended	use	of	the	granted	RID	within	a	reasonable	time	frame;	and	

e) to	maintain	a	permanent	record	of	the	application	form	and	the	notification	received	from	the	
Registration	Authority	of	a	granted	RID.	

D.6 Appeal Procedure for Denied Applications

The	Registration	Management	Group	is	formed	to	have	jurisdiction	over	appeals	to	denied	request	for	a	
RID.	The	RMG	shall	have	a	membership	who	 is	nominated	by	P‐	and	L‐members	of	 the	 ISO	 technical	
committee	responsible	for	ISO/IEC	14496.	It	shall	have	a	convenor	and	secretariat	nominated	from	its	
members.	The	Registration	Authority	is	entitled	to	nominate	one	non‐voting	observing	member.	

The	responsibilities	of	the	RMG	shall	be:	

a) to	review	and	act	on	all	appeals	within	a	reasonable	time	frame;	

b) to	inform,	in	writing,	organizations	which	make	an	appeal	for	reconsideration	of	its	petition	of	
the	RMGs	disposition	of	the	matter;	

c) to	review	the	annual	report	of	the	Registration	Authorities	summary	of	activities;	and	

d) to	supply	Member	Bodies	of	 ISO	and	National	Committees	of	 IEC	with	information	concerning	
the	scope	of	operation	of	the	Registration	Authority.	

D.7 Registration Application Form

D.7.1 Contact Information of organization requesting a RID

Organization	Name:	

Address:	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 193

	

Telephone:	

Fax:	

E‐mail:	

Telex:	

D.7.2 Request for a specific RID

NOTE	—	If	the	system	has	already	been	implemented	and	is	in	use,	fill	in	this	item	and	item	D.7.3	and	skip	to	D.7.5,	
otherwise	leave	this	space	blank	and	skip	to	D.7.3)	

D.7.3 Short description of RID that is in use and date system was implemented

D.7.4 Statement of an intention to apply the assigned RID

D.7.5 Date of intended implementation of the RID

D.7.6 Authorized representative

Name:	

Title:	

Address:	

Email:	

Signature	__________________________________	

ISO/IEC 14496-12:2015(E)

194	 ©	ISO/IEC	2015	–	All	rights	reserved

	

D.7.7 For official use of the Registration Authority

Attachment	1		Attachment	of	technical	details	of	the	registered	data	format.	

Attachment	2		Attachment	of	notification	of	appeal	procedure	for	rejected	applications.	

	 Registration	Rejected	_____	

	 Reason	for	rejection	of	the	application:	

	 Registration	Granted		 	Registration	Value	____________________	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 195

	

Annex E
(normative)	

	
File format brands

E.1 Introduction

The	presence	of	a	brand	in	the	compatible_brands	list	of	the	ftyp	box	is	a	claim	and	a	permission.	
It	 is	a	claim	that	the	file	conforms	to	all	the	requirements	of	that	brand,	and	a	permission	to	a	reader	
implementing	potentially	only	that	brand	to	read	the	file.	

In	 general,	 readers	are	 required	 to	 implement	 all	 features	documented	 for	a	brand	unless	one	of	 the	
following	applies:	

a) the	media	they	are	using	does	not	use	or	require	a	feature:		for	example,	I‐frame	video	does	not	
need	a	sync	sample	table,	and	if	composition	re‐ordering	is	not	used,	then	no	composition	time	
offset	 table	 is	 needed;	 similarly,	 if	 content	 protection	 is	 not	 needed,	 then	 support	 for	 the	
structures	of	content	protection	is	not	required.	

b) another	specification	with	which	the	file	is	conformant	forbids	the	use	of	a	feature	(for	example,	
some	derived	specifications	explicitly	forbid	use	of	movie	fragments);	

c) the	 context	 in	 which	 the	 product	 operates	means	 that	 some	 structures	 are	 not	 relevant;	 for	
example,	 hint	 track	 structures	 are	 only	 relevant	 to	 products	 preparing	 content	 for,	 or	
performing,	file	delivery	(such	as	streaming)	for	the	protocol	in	the	hint	track.	

The	 following	 sections	 list	 the	 brands	 defined	 in	 this	 specification;	 no	 inheritance	 is	 implied	 by	 the	
section	order	–	when	inheritance	occurs,	it	is	specifically	stated.	Other	brands	may	be	defined	in	other	
specifications.	Note	that	if	one	brand	is	a	subset	of	another	(e.g.,	‘isom’	requirements	are	a	subset	of	
the	‘iso2’	requirements)	then:	

a) files	labelled	as	compatible	with	the	subset	can	always	be	labelled	as	also	compatible	with	the	
superset;	a	file	compatible	with	‘isom’	can	always	be	labelled	as	compatible	with	‘iso2’;	

b) products	supporting	the	superset	automatically	can	support	the	subset;	a	product	that	supports	
‘iso2’	also	necessarily	supports	‘isom’.	

No	brands	defined	here	require	support	for	any	particular	media	type	(e.g.,	video,	audio,	meta‐data)	or	
media	 encoding	 (e.g.,	 a	 particular	 codec),	 or	 structures	 supporting	 a	 specific	media	 type	 (e.g.,	 Visual	
Sample	Entries	or	the	boxes	contained	in	a	specific	kind	of	sample	entry).	

More	specific	identifiers	can	be	used	to	identify	precise	versions	of	specifications	providing	more	detail.	
These	 brands	 should	 not	 be	 used	 as	 the	 major	 brand;	 this	 base	 file	 format	 should	 be	 derived	 into	
another	 specification	 to	 be	 used.	 There	 is	 therefore	 no	 defined	 normal	 file	 extension,	 or	mime	 type	
assigned	 to	 these	brands,	nor	definition	of	 the	minor	 version	when	one	of	 these	brands	 is	 the	major	
brand.	

ISO/IEC 14496-12:2015(E)

196	 ©	ISO/IEC	2015	–	All	rights	reserved

	

E.2 The ‘isom’ brand

The	type	‘isom’	(ISO	Base	Media	file)	is	defined	in	this	section	of	this	specification,	as	identifying	files	
that	conform	to	the	first	version	of	ISO	Base	Media	File	Format.	

Support	for	the	following	structural	boxes	is	required:	

moov container for all the meta-data
 mvhd movie header, overall declarations
 trak container for an individual track or stream
 tkhd track header, overall information about the track
 tref track reference container
 edts edit list container
 elst an edit list
 mdia container for the media information in a track
 mdhd media header, overall information about the media
 hdlr handler, at this level, the media (handler) type
 minf media information container
 vmhd video media header, overall information (video track only)
 smhd sound media header, overall information (sound track only)
 hmhd hint media header, overall information (hint track only)
 <mpeg> mpeg stream headers
 dinf data information atom, container
 dref data reference atom, declares source(s) of media in track
 stbl sample table atom, container for the time/space map
 stts (decoding) time-to-sample
 ctts composition time-to-sample table
 stss sync (key, I-frame) sample map
 stsd sample descriptions (codec types, initialization etc.)
 stsz sample sizes (framing)
 stsc sample-to-chunk, partial data-offset information
 stco chunk offset, partial data-offset information
 co64	 64-bit chunk offset
 stsh shadow sync
 stdp degradation priority
mdat Media data container
free free space
skip free space
udta user-data, copyright etc.
ftyp	 file type and compatibility
	 stz2 compact sample sizes (framing)
	 padb sample padding bits
	 mvex movie extends box
	 mehd movie extends header box
	 trex track extends defaults
moof	 movie fragment
	 mfhd movie fragment header
	 traf track fragment
	 tfhd track fragment header
	 trun track fragment run
mfra	 movie fragment random access
	 tfra track fragment random access
	 mfro movie fragment random access offset

	

Hint	tracks	must	be	recognized,	and	in	hint	tracks,	RTP	protocol	hint	tracks.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 197

	

Note	that	some	requirements	of	the	Track	Header	Box	do	not	apply	to	this	brand;	see	sub‐clause	8.3.2.1.	

Support	for	only	version	0	of	the	‘ctts’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

NOTE	 The	default‐base‐is‐moof	flag	(8.8.7.1)	cannot	be	set	where	a	file	is	marked	with	this	brand.	

E.3 The ‘avc1’ brand

The	brand	‘avc1’	 shall	 be	used	 to	 indicate	 that	 the	 file	 is	 conformant	with	 the	 ‘AVC	Extensions’	 in	
subclauses	8.6.4	and	8.9.	If	used	without	other	brands,	this	implies	that	support	for	those	extensions	is	
required.	The	use	of	‘avc1’	 as	a	major‐brand	may	be	permitted	by	specifications;	 in	 that	 case,	 that	
specification	defines	the	file	extension	and	required	behaviour.

The	‘avc1’	brand	requires	support	for	the	‘isom’	brand.	In	addition,	support	of	the	following	boxes	
is	required:	

 sdtp independent and disposable samples
 sbgp sample-to-group
 sgpd sample group description

	

Within	the	sample	groups,	support	for	roll	groups	(grouping	type	‘roll’)	is	required.	

NOTE	 The	default‐base‐is‐moof	flag	(8.8.7.1)	cannot	be	set	where	a	file	is	marked	with	this	brand.	

Note	that	some	requirements	of	the	Track	Header	Box	do	not	apply	to	this	brand;	see	sub‐clause	8.3.2.1.	

Support	for	only	version	0	of	the	‘ctts’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

Support	of	SampleGroupDescription	boxes	in	movie	fragments	is	not	required.	

E.4 The ‘iso2’ brand

The	brand	‘iso2’	shall	be	used	to	indicate	compatibility	with	the	second	version	of	the	ISO	Base	Media	
File	Format;	it	may	be	used	in	addition	to	or	instead	of	the	‘isom’	brand	and	the	same	usage	rules	apply.	
If	 used	 without	 the	 brand	 'isom'	 identifying	 the	 first	 version	 of	 this	 specification,	 it	 indicates	 that	
support	for	some	or	all	of	the	technology	in	subclauses	8.6.4,	8.8.15,	8.11.1	through	8.11.7,	8.11.10,	0,	or	
the	SRTP	support	in	subclause	9.1,	is	required.	

The	‘iso2’	brand	requires	support	for	all	features	of	the	‘avc1’	brand.	

In	addition,	support	for	the	following	boxes	is	required:	

pdin progressive download information
 subs sub-sample information
meta metadata
 iloc item location
 ipro item protection
 sinf protection scheme information box

ISO/IEC 14496-12:2015(E)

198	 ©	ISO/IEC	2015	–	All	rights	reserved

	

 frma original format box
 schm scheme type box
 schi scheme information box
 iinf item information (version field set to 0)
 xml XML container
 bxml binary XML container
 pitm primary item reference

In	 the	 context	 of	RTP	hint	 tracks,	 SRTP	hint	 tracks	must	 now	be	 recognized.	 Content	protection	 and	
generalized	meta‐data	boxes	support	is	required.	

Only	 support	 for	 version	 0	 of	 the	 item	 information	 box,	 and	 version	 0	 of	 the	 item	 location	 box,	 is	
required.	

Note	that	some	requirements	of	the	Track	Header	Box	do	not	apply	to	this	brand;	see	sub‐clause	8.3.2.1.	

Support	for	only	version	0	of	the	‘ctts’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	SampleGroupDescription	boxes	in	movie	fragments	is	not	required.	

NOTE	 The	default‐base‐is‐moof	flag	(8.8.7.1)	cannot	be	set	where	a	file	is	marked	with	this	brand.	

 Support	for	only	16‐bit	item_ID	and	item_count	values	in	‘meta’	box	is	required	here;	32‐
bit	item_ID	and	item_count	values	in	‘meta’	box	is	not	required	

 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	

E.5 The ‘mp71’ brand

If	a	Meta‐box	with	an	MPEG‐7	handler	type	is	used	at	the	file	level,	then	the	brand	‘mp71’	should	be	a	
member	of	the	compatible‐brands	list	in	the	file‐type	box.	

E.6 The ‘iso3’ brand

The	brand	‘iso3’	requires	support	for	all	features	of	the	‘iso2’	brand.	

In	addition,	support	for	the	following	is	required:	

 fiin file delivery item information
 paen partition entry
 fpar file partition
 fecr FEC reservoir
 segr file delivery session group
 gitn group id to name
meco additional metadata container
 mere metabox relation

	

Support	for	version	0	and	version	1	of	the	item	information	box	is	required.	Within	the	sample	groups,	
support	 for	 rate	 share	 information	 (grouping	 type	 ‘rash’)	 is	 required.	 File	 delivery	 hint	 tracks	
(sample	entry	‘fdp ’)	must	be	recognized.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 199

	

Support	for	only	version	0	of	the	‘ctts’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	SampleGroupDescription	boxes	in	movie	fragments	is	not	required.	

Only	support	for	version	0	of	the	item	location	box,	is	required.	

NOTE	 The	default‐base‐is‐moof	flag	(8.8.7.1)	cannot	be	set	where	a	file	is	marked	with	this	brand.	

 Support	for	only	16‐bit	item_ID	and	item_count	values	in	‘meta’	box	is	required	here;	32‐
bit	item_ID	and	item_count	values	in	‘meta’	box	is	not	required	

 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	

E.7 The ‘iso4’ brand

The	brand	‘iso4’	requires	support	for	all	features	of	the	‘iso3’	brand.	

Support	for	version	1	of	the	composition	offset	(‘ctts’	and	‘iloc’)	boxes	is	required	under	this	brand.	

Support	 for	version	1	of	 the	 item	 location	box,	version	2	of	 the	 item	 info	box,	and	 the	new	 item	data	
(‘idat’)	and	item	reference	(‘iref’)	boxes	is	required.	

In	addition,	support	for	the	following	is	required:	

 trgr track grouping indication
 cslg composition to decode timeline mapping
 idat item data
 iref item reference

	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	SampleGroupDescription	boxes	in	movie	fragments	is	not	required.	

NOTE	 The	default‐base‐is‐moof	flag	(8.8.7.1)	cannot	be	set	where	a	file	is	marked	with	this	brand.	

 Support	for	only	16‐bit	item_ID	and	item_count	values	in	‘meta’	box	is	required	here;	32‐
bit	item_ID	and	item_count	values	in	‘meta’	box	is	not	required	

 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	
 Support	for	only	32‐bit	values	in	‘cslg’	box	is	required.	here;	64‐bit	values	in	‘cslg’	box	is	not	

required.	

E.8 The ‘iso5’ brand

The	brand	‘iso5’	requires	support	for	all	features	of	the	‘iso4’	brand.	

Support	for	the	default‐base‐is‐moof	flag	is	required	under	this	brand.	

ISO/IEC 14496-12:2015(E)

200	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Processing	of	restricted	sample	entries	(i.e.	‘resv’)	is	required	under	this	brand.	

Support	for	only	version	0	of	the	‘trun’	box	is	required	here;	version	1	support	is	not	required.	

Support	for	SampleGroupDescription	boxes	in	movie	fragments	is	not	required.	

 Support	for	only	16‐bit	item_ID	and	item_count	values	in	‘meta’	box	is	required	here;	32‐
bit	item_ID	and	item_count	values	in	‘meta’	box	is	not	required	

 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	
 Support	for	only	32‐bit	values	in	‘cslg’	box	is	required.	here;	64‐bit	values	in	‘cslg’	box	is	not	

required.	

E.9 The ‘iso6’ brand

The	brand	‘iso6’	requires	support	for	all	features	of	the	‘iso5’	brand.	

Support	for	the	following	boxes	is	required	under	this	brand:	

 saiz sample auxiliary information sizes
 saio sample auxiliary information offsets
 tfdt track fragment decode time
styp segment type
sidx segment index
ssix subsegment index
prft producer reference time

	

Support	for	the	following	is	required	under	this	brand:	

 SampleGroupDescription	boxes	in	movie	fragments;	

 Signed	composition	offsets	in	track	run	boxes	(i.e.	version	1	of	track	run	boxes);	

 Within	the	sample	groups,	support	 for	random	access	point	 information	(grouping	type	‘rap
’)	is	required.	

 Support	for	only	16‐bit	item_ID	and	item_count	values	in	‘meta’	box	is	required	here;	32‐bit	
item_ID	and	item_count	values	in	‘meta’	box	is	not	required	

 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	
 Support	for	only	32‐bit	values	in	‘cslg’	box	is	required.	here;	64‐bit	values	in	‘cslg’	box	is	not	

required.	

E.10 The ‘iso7’ brand

The	brand	‘iso7’	requires	support	for	all	features	of	the	‘iso6’	brand.	

Support	for	the	following	boxes	is	required	under	this	brand:	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 201

	

 trep track extension properties
 assp alternative startup sequence properties

Support	for	the	following	is	required	under	this	brand:	

 Support	for	32‐bit	item_ID	and	item_count	values	in	‘meta’	box	
 Recognizing	incomplete	tracks.	
 Support	for	‘meta’	box	in	movie	fragments	is	not	required	
 Support	for	only	‘subs’	box	per	track	is	required	here	
 Support	for	only	32‐bit	values	in	‘cslg’	box	is	required.	here;	64‐bit	values	in	‘cslg’	box	is	not	

required.	

E.11 The ‘iso8’ brand

The	brand	‘iso8’	requires	support	for	all	features	of	the	‘iso7’	brand.	

Support	for	the	following	boxes	is	required	under	this	brand:		

 sthd subtitle media header, overall information (subtitle
track only)

Support	for	the	following	is	required	under	this	brand:	

 Support	for	‘meta’	box	in	movie	fragments	
 Support	for	one	or	more	‘subs’	box	per	track	
 Support	for	only	32‐bit	values	in	‘cslg’	box	is	required.	here;	64‐bit	values	in	‘cslg’	box	is	not	

required.	

E.12 The ‘iso9’ brand

The	brand	‘iso9’	requires	support	for	all	features	of	the	‘iso8’	brand.	

Support	for	the	following	boxes	is	required	under	this	brand:		

	 elng extended language tag

	

Support	for	the	following	is	required	under	this	brand:	

 Support	for	64‐bit	values	in	‘cslg’	box;	

ISO/IEC 14496-12:2015(E)

202	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Annex F	
(void)	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 203

	

Annex G
(informative)	

	
URI-labelled metadata forms

G.1 UUID-labelled metadata

The	 format	of	 the	URI	 for	UUID‐labelled	metadata	 is	defined	 in	 IETF	RFC	4122:	A	Universally	Unique	
IDentifier	(UUID)	URN	Namespace	(July	2005).	

There	 are	 no	 general	 statements	 about	 the	 form	 of	 the	 primary	metadata,	 the	 initialization	 data	 for	
temporal	metadata,	 or	 the	 temporal	metadata	 itself.	 The	 form	of	 all	 of	 these	 depends	 on	 the	precise	
UUID	and	its	definition.	

Note	that	UUIDs	cannot	easily	be	traced	to	their	point	of	origin,	and	so	they	may	be	unsuitable	 if	 it	 is	
desired	that	recipients	of	metadata	be	able	to	find,	if	needed,	the	associated	documentation.	

If	 traceability	 is	 needed,	 then	 a	 standardized	metadata	 framework,	 such	 as	MPEG‐7,	 or	 a	 registered	
framework,	such	as	SMPTE,	or	a	de‐referencable	URL	should	be	used.	

G.2 ISO OID-labelled metadata

The	 format	of	 the	URI	 for	OID‐labelled	metadata	 is	defined	 in	RFC	3061:	A	URN	Namespace	of	Object	
Identifiers	(February	2001).	

There	 are	 no	 general	 statements	 about	 the	 form	 of	 the	 primary	metadata,	 the	 initialization	 data	 for	
temporal	metadata,	 or	 the	 temporal	metadata	 itself.	 The	 form	of	 all	 of	 these	 depends	 on	 the	precise	
object	identifier	and	its	definition.	

A	 number	 of	 more	 specific	 labelling	 systems	 can	 also	 be	 expressed	 as	 object	 identifiers.	 The	 more	
specific	UUID	form	should	be	used.	

Object	 identifiers	 starting	 {joint‐iso‐itu(2)	 uuid(25)}	 (i.e.	 starting	 urn:oid:2.25)	 should	 not	 be	 used;	
UUID	URIs	should	be	used	directly.	

Object	 identifiers	 starting	 {iso(1)	 identified‐organizations(3)	 SMPTE(52)	metadata‐dictionary(1)}	 (i.e.	
urn:oid:1.3.52.1)	 should	 not	 be	 used,	 nor	 should	 any	 other	 OID	 being	 used	 as	 a	 label	 according	 to	
SMPTE	298M	or	336M;	the	more	specific	SMPTE	URI	form	should	be	used.	

Object	 Identifiers	 are	 registered	 to	 specific	 organizations,	 and	 so	 it	 may	 be	 possible	 to	 identify	 the	
organization	 owning	 a	 particular	 identifier.	 However,	 some	 sections	 of	 the	 object	 identifier	 tree	 are	
delegated	to	unregistered	uses	(such	as	UUIDs,	as	noted	above),	and	traceability	is	then	lost.	

If	 traceability	 is	 needed,	 then	 a	 standardized	metadata	 framework,	 such	 as	MPEG‐7,	 or	 a	 registered	
framework,	such	as	SMPTE,	or	a	de‐referencable	URL	should	be	used.	

ISO/IEC 14496-12:2015(E)

204	 ©	ISO/IEC	2015	–	All	rights	reserved

	

G.3 SMPTE-labelled metadata

The	format	of	the	URI	for	SMPTE‐labelled	metadata	is	in	RFC	5119;	A	Uniform	Resource	Name	(URN)	
Namespace	for	the	Society	of	Motion	Picture	and	Television	Engineers	(SMPTE).	

The	primary	metadata	 is	 exactly	 the	 value	 (V)	part	of	 a	KLV	 (key,	 length,	 value)	 triplet	 as	defined	 in	
SMPTE	336M,	with	the	key	being	the	label	given	in	the	URN,	and	the	length	(L)	being	derived	from	the	
item	length.	

Similarly,	each	temporal	metadata	sample	is	the	value	(V)	part	of	a	KLV,	where	the	key	is	the	URN	label	
given	in	the	matching	sample	entry,	and	the	length	(L)	is	derived	from	the	sample	size	(as	given	in	the	
sample	size	or	compact	sample	size	tables).	

The	initialization	data	may	be	present.	It	contains	the	key	(K)	and	value	(V)	of	a	KLV	that	provides	an	
initialization	context	for	the	KLVs	formed	from	the	samples,	with	the	length	(L)	being	derived	from	the	
DataBox	size.	The	first	16	bytes	are	a	SMPTE	label	of	the	initialization	data,	stored	as	defined	in	SMPTE	
336M,	followed	by	the	data.	

The	typical	value	of	these	bytes,	as	defined	in	SMPTE	377M,	is	‘primer	pack’	(in	hexadecimal):		06	0E	2B	
34	 	 	02	05	01	01	 	 	 0D	01	02	01	 	 	 01	05	01	00.	 If	 the	 label	of	 the	 initialization	data	does	not,	 in	 fact,	
identify	a	structure	giving	context	information	(such	as	a	primer	pack),	the	behaviour	is	undefined.	This	
enables	each	sample	to	be	a	local	set.	The	rules	for	the	construction	of	local	sets,	as	defined	in	SMPTE	
377M,	must	be	followed.	

SMPTE	377M	uses	 locators	 to	 locate	other	resources	outside	 the	metadata	 itself.	For	static	metadata,	
these	should	use	the	item	location	box	in	the	meta‐box.	For	temporal	metadata,	external	pointers	may	
be	used	directly.	

The	 initialization	 data	 may	 be	 absent,	 and	 the	 label	 then	 identifies	 a	 specific	 metadata	 item	 (e.g.	 a	
geographic	locator)	not	needing	a	context.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 205

	

Annex H
(informative)	

	
Processing of RTP streams and reception hint tracks

H.1 Introduction

H.1.1 Overview

This	 Annex	 provides	 recommendations	 for	 recording	 of	 RTP	 streams	 and	 the	 use	 of	 recorded	 RTP	
streams	for	playback	and	re‐sending.	

H.1.2 Structure

This	Annex	is	organized	as	follows:	

- H.2	introduces	the	potential	sources	why	the	playback	of	RTP	streams	might	become	
unsynchronized	and	provides	an	overview	how	proper	synchronization	is	facilitated	in	recording	
and	playback.	It	precedes	the	other	Clauses,	because	both	the	recording	unit	and	the	player	have	
to	take	actions	to	achieve	proper	synchronization.	

- H.3	provides	recommendations	for	storing	RTP	streams.	

- H.4	provides	recommendations	how	to	play	files	containing	recorded	RTP	streams.	

- H.5	provides	recommendations	for	re‐sending	received	RTP	streams	stored	in	files	as	described	
in	H.3.	

H.1.3 Terms and definitions

For	the	purposes	of	this	annex,	the	following	terms	and	definitions	apply.	

H.1.3.1 player
entity	that	parses	a	file,	decodes	at	least	a	subset	of	the	tracks	in	the	file,	and	renders	the	decoded	tracks	

H.1.3.2 recording unit
entity	that	receives	one	or	more	packet	streams	of	encapsulated	and	compressed	media	and	stores	the	
received	media	into	a	file	

H.1.3.3 re-sending unit
entity	that	parses	a	file	containing	media	that	originates	from	one	or	more	received	packet	streams	of	
encapsulated	and	compressed	media	and	transmits	at	least	a	subset	of	the	media	stored	in	the	file	

H.2 Synchronization of RTP streams

There	are	several	potential	sources	of	unsynchronized	playback	for	received	RTP	streams.	When	RTP	
streams	 are	 recorded	 as	 RTP	 reception	 hint	 tracks,	 the	 necessary	 information	 for	 guaranteeing	
synchronized	 playback	 is	 also	 recorded.	 When	 RTP	 streams	 are	 recorded	 as	 media	 tracks,	 the	
synchronization	of	the	playback	of	the	media	tracks	has	to	be	guaranteed	by	creating	the	composition	
times	of	 the	media	samples	appropriately.	The	following	 list	describes	the	sources	of	unsynchronized	

ISO/IEC 14496-12:2015(E)

206	 ©	ISO/IEC	2015	–	All	rights	reserved

	

playback	for	received	RTP	streams,	summarizes	the	recommended	synchronization	means,	and	points	
to	the	relevant	Clauses	for	further	information.	

1. The	 RTP	 timestamp	 of	 the	 first	 packet	 of	 the	 stream	 has	 a	 random	 offset.	 Hence,	 the	 RTP	
timestamps	of	 two	streams	are	shifted	by	the	difference	of	 their	 initial	random	offsets	even	 if	
the	 potentially	 different	 clock	 rate	 of	 the	 RTP	 timestamps	 of	 the	 different	 streams	 were	
compensated.	The	random	offset	should	be	reflected	in	the	value	of	the	offset	field	of	the	'tsro'	
box	of	the	referred	reception	hint	sample	entry	as	described	in	H.3.5.	

2. The	 first	 received	 and	 recorded	 packet	 of	 the	 different	 streams	 may	 not	 have	 an	 identical	
playback	time	as	discussed	in	H.3.2.	The	unequal	start	time	of	the	different	recorded	streams	is	
compensated	by	parsing	one	or	more	RTCP	Sender	Reports	to	derive	the	playback	time	as	the	
wallclock	time	of	the	sender	and	creating	an	initial	offset	of	the	playback	using	the	Edit	List	box	
as	described	in	H.3.2.	The	Edit	List	box	is	interpreted	by	the	player	as	described	in	0.	

3. There	is	no	guarantee	that	the	clock	for	producing	the	RTP	timestamps	of	a	certain	RTP	stream	
runs	 at	 the	 same	pace	 as	 the	wallclock	 time	 of	 the	 sender,	which	 is	 used	 to	 create	 the	RTCP	
Sender	Reports.	For	example,	the	RTP	timestamps	may	be	generated	on	the	basis	of	a	constant	
sampling	frequency,	e.g.	44.1	kHz	for	audio,	and	hence	governed	by	the	clock	rate	of	the	audio	
capturing	 hardware.	 However,	 the	 RTCP	 Sender	 Reports	 may	 be	 generated	 according	 to	 the	
system	 clock	 running	 at	 a	 different	 pace	 than	 the	 clock	 of	 the	 audio	 capturing	 hardware.	
Moreover,	 the	clock	used	 to	generate	RTP	timestamps	 for	audio	might	run	at	a	different	pace	
than	the	clock	used	to	generate	RTP	timestamps	for	video	(when	both	a	normalized	to	the	same	
clock	tick	frequency).	

A	similar	problem	in	the	player	arises	if	the	clock	pacing	the	output	of	a	decoded	stream	runs	at	
a	different	pace	than	the	wallclock	of	the	player	or	the	clocks	pacing	the	rendering	of	different	
decoded	streams	are	not	synchronized.	

The	 recommended	 approach	 for	 all	 these	 potential	 problems	 of	 clocks	 running	 at	 a	 different	
pace	is	to	use	RTCP	Sender	Reports	to	align	the	RTP	timestamps	of	different	streams	onto	the	
same	wallclock	timeline,	which	is	used	for	inter‐stream	synchronization.	This	alignment	can	be	
done	 while	 recording	 the	 streams	 by	 modifying	 the	 representation	 of	 the	 recorded	 RTP	
timestamps	or	while	playing	the	recorded	streams	by	using	the	recorded	RTCP	Sender	Reports	
as	described	in	H.3.6.	Moreover,	it	is	recommended	to	pace	the	playback	according	to	the	audio	
playout	rate	as	described	in	0.	

4. The	wallclock	of	the	sender	may	run	at	a	different	pace	than	the	wallclock	of	the	player.	

It	is	recommended	to	play	a	recorded	program	at	the	pace	of	the	wallclock	of	the	player	and	to	
use	 the	 audio	 playout	 clock	 as	 the	wallclock	 of	 the	 player.	 Consequently,	 the	 audio	 timescale	
does	not	typically	have	to	be	modified.	Even	if	the	wallclock	of	the	player	ran	at	a	different	pace	
than	the	wallclock	of	the	sender,	it	is	typically	unnoticeable.	

Pacing	of	the	output	of	decoded	media	samples	is	described	in	0.	

H.3 Recording of RTP streams

H.3.1 Introduction

Recording	of	RTP	streams	can	result	into	three	basic	file	structures.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 207

	

1. A	file	containing	only	RTP	reception	hint	tracks.	No	media	tracks	are	included.	This	file	structure	
enables	efficient	processing	of	packet	losses,	but	only	players	capable	of	parsing	RTP	reception	
hint	tracks	can	play	the	file.	

2. A	file	containing	only	media	tracks.	No	RTP	reception	hint	tracks	are	included.	This	file	structure	
allows	 existing	 players	 compliant	with	 the	 earlier	 versions	 of	 the	 ISO	 base	media	 file	 format	
process	recorded	files	as	long	as	the	media	formats	are	also	supported.	However,	sophisticated	
processing	 of	 transmission	 errors	 is	 not	 possible	 due	 to	 reasons	 explained	 in	 subsequent	
clauses.	

3. A	file	containing	both	RTP	reception	hint	tracks	and	media	tracks.	This	file	structure	has	both	
the	benefits	mentioned	above	and	should	be	used	when	for	as	good	interoperability	as	possible	
with	other	file	formats	derived	from	the	ISO	base	media	file	format.	

If	an	RTP	stream	being	recorded	is	protected,	a	protected	RTP	reception	hint	track	is	used	instead	of	an	
RTP	reception	hint	 track,	while	 the	operation	of	 the	recording	unit	 remains	unchanged	otherwise.	At	
the	 time	of	playback,	 the	data	 included	 in	 the	protected	RTP	reception	hint	 track	 is	unprotected	 first	
and	then	processed	similarly	to	a	conventional	unprotected	RTP	stream.	Alternatively,	the	RTP	stream	
may	be	unprotected	before	storing	it	as	a	RTP	reception	hint	track,	but	then	care	has	to	be	taken	that	
the	rights	to	use	the	content	in	the	protected	RTP	stream	are	obeyed.	

Some	of	the	recording	operations	are	common	for	all	the	three	file	structures,	while	others	differ.	Table	
H.1	indicates	which	recording	operations	are	required	for	the	basic	file	structures.	

ISO/IEC 14496-12:2015(E)

208	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Table H.1

	 File	containing	only	
RTP	reception	hint	
tracks	

File	containing	only	
media	tracks	

File	containing	both	
RTP	reception	hint	
tracks	and	media	
tracks	

Compensation	for	
unequal	starting	
position	of	received	
RTP	streams		
(H.3.2)	

no,	when	RTCP	
reception	hint	tracks	
are	stored;		
yes,	otherwise	

yes	 no,	when	RTCP	
reception	hint	tracks	
are	stored;		
yes,	otherwise	

Recording	of	SDP	
(H.3.3)	

yes	 no	 yes,	for	RTP	reception	
hint	tracks	only	

Creation	of	a	sample	
within	an	RTP	
reception	hint	track	
(H.3.4)	

yes	 no	 yes,	for	RTP	reception	
hint	tracks	only	

Representation	of	RTP	
timestamps	
(H.3.5)	

yes	 no	 yes,	for	RTP	reception	
hint	tracks	only	

Recording	operations	
to	facilitate	inter‐
stream	
synchronization	in	
playback	
(H.3.6)	

yes	 yes,	the	composition	
times	of	media	tracks	
should	be	
compensated	as	
described	in	H.3.6.3	

yes	

Representation	of	
reception	times	
(H.3.7)	

yes	 no	 yes,	for	RTP	reception	
hint	tracks	only	

Creation	of	media	
samples	
(H.3.8)	

no	 yes	 yes,	for	media	tracks	
only	

Creation	of	hint	
samples	referring	to	
media	samples	
(H.3.9)	

no	 no	 yes	

	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 209

	

Some	 implementations	 may	 record	 first	 to	 RTP	 reception	 hint	 tracks	 only	 and	 create	 a	 file	 with	 a	
combination	of	media	tracks	and	RTP	reception	hint	tracks	off‐line.	

H.3.2 Compensation for unequal starting for position of received RTP streams

When	 the	 recording	 of	 RTP	 streams	 is	 started,	 it	 can	 happen	 that	 the	 presentation	 time	 of	 the	 first	
media	 sample	 in	 one	 RTP	 stream	 is	 not	 equal	 to	 the	 presentation	 time	 of	 the	 first	media	 sample	 in	
another	RTP	stream	at	least	due	to	the	following	reasons:	

- The	sampling	frequency	of	audio	and	video	typically	differ.	

- Audio	 and	 video	 streams	may	 not	 be	 perfectly	 interleaved	 in	 terms	 of	 presentation	 times	 in	
transmission	order.	

If	RTCP	reception	hint	tracks	are	stored,	the	compensation	for	unequal	starting	position	of	received	RTP	
streams	 should	 be	 done	 at	 playback	 time	 and	no	Edit	 List	 box	 concerning	RTP	 reception	hint	 tracks	
should	 be	 created.	 If	 RTCP	 reception	 hint	 tracks	 are	 not	 stored	 or	 if	 media	 tracks	 are	 stored	 it	 is	
essential	 that	 the	 recording	 unit	 indicates	 the	 relative	 initial	 delay	 of	 the	 streams	 in	 order	 to	
synchronize	 audio	 and	 video	 correctly	 at	 the	 beginning	 of	 the	 playback	 of	 the	 streams	 as	 described	
subsequently	in	this	Clause.	The	recording	unit	should	perform	the	following	operations.	

1. An	RTCP	Sender	Report	 indicates	which	RTP	 timestamp	corresponds	 to	 the	wallclock	 time	of	
the	time	instant	the	report	was	sent.	At	least	the	first	RTCP	Sender	Report	for	each	RTP	stream	
should	be	parsed	in	order	to	establish	an	equivalence	of	an	RTP	timestamp	of	each	RTP	stream	
and	a	wallclock	time	of	the	sender.	The	wallclock	timestamp	of	the	earliest	received	RTP	packet,	
in	presentation	order,	is	derived	for	each	RTP	stream	by	simple	linear	extrapolation.	

2. The	smallest	wallclock	timestamp	derived	above	among	all	the	received	RTP	streams	is	mapped	
to	 presentation	 timestamp	 zero	 in	 the	 movie	 timeline,	 i.e.,	 is	 presented	 immediately	 at	 the	
beginning	of	the	playback	of	the	recorded	file.	The	movie	timeline	is	the	master	timeline	for	the	
playback	of	the	file.	

3. The	media	timeline	for	each	track	starts	from	0.	In	order	to	shift	the	media	timeline	to	a	correct	
starting	position	in	the	movie	timeline,	an	Edit	box	and	an	Edit	List	box	are	created	for	each	of	
the	other	RTP	tracks	(which	do	not	contain	a	packet	having	the	earliest	wallclock	timestamp)	as	
follows:	

The	Edit	List	box	contains	two	entries:	

a) The	 first	 entry	 is	 an	 empty	 edit	 (indicated	 by	media_time	 equal	 to	 ‐1),	 and	 its	 duration	
(segment_duration)	 is	 equal	 to	 the	 difference	 of	 the	 presentation	 times	 of	 the	 earliest	
media	 sample	 among	 all	 the	 RTP	 streams	 and	 the	 earliest	 media	 sample	 of	 the	 track.	
Figure	H.1	presents	an	example	of	how	the	segment_duration	of	the	first	entry	in	an	Edit	
List	box	is	derived.	

b) The	value	of	media_time	of	the	second	entry	is	equal	to	the	composition	time	of	the	earliest	
sample	 in	 presentation	 order,	 and	 the	 value	 of	 segment_duration	 of	 the	 second	 entry	
spans	over	the	entire	track.	As	the	actual	duration	of	 the	track	might	not	be	known	at	the	
time	of	creating	the	Edit	List	box,	it	is	recommended	to	set	the	segment_duration	equal	to	
the	maximum	possible	value	(either	the	maximum	32‐bit	unsigned	integer	or	the	maximum	
64‐bit	unsigned	integer,	depending	on	which	version	of	the	box	is	used).	

The	value	of	media_rate_integer	is	equal	to	1	in	both	the	entries	of	the	Edit	List	box.	

ISO/IEC 14496-12:2015(E)

210	 ©	ISO/IEC	2015	–	All	rights	reserved

	

1
staudio sam

ple

1
stvid

eo sam
ple

	

Figure H.1 — An example of an Edit List box to compensate the unequal starting of the received
RTP streams, segment_duration is copied to the first entry of the Edit List box

Some	recording	units	may	detect	packets	from	which	decoding	can	be	started,	such	as	IDR	pictures	of	
H.264/AVC	streams,	which	are	here	referred	to	as	random	access	points.	If	a	stream	contains	a	packet	
having	the	earliest	wallclock	timestamp	among	all	the	received	streams	and	the	same	stream	contains	
packets	preceding,	 in	decoding	order,	 the	 first	random	access	point	of	 the	stream,	 it	 is	 recommended	
not	to	store	the	packets	preceding	the	first	random	access	point	of	the	stream	and	not	to	consider	them	
when	determining	the	earliest	wallclock	timestamp	among	all	the	received	streams.	

H.3.3 Recording of SDP

The	SDP	should	be	stored	as	follows.	Session‐level	SDP,	i.e.,	all	lines	before	the	first	media‐specific	line	
(“m=”	line),	should	be	stored	as	Movie	SDP	information	within	the	User	Data	box,	as	specified	in	9.1.4.1.	
Each	media‐level	section	within	the	SDP	description	starts	with	an	'm='	line	and	continues	to	the	next	
media‐level	 section	 or	 the	 end	 of	 the	whole	 session	 description.	 Each	media‐level	 section	 should	 be	
stored	 as	 Track	 SDP	 information	within	 the	 User	 Data	 box	 of	 the	 corresponding	 RTP	 reception	 hint	
track.	

H.3.4 Creation of a sample within an RTP reception hint track

It	 is	 recommended	 that	 each	 sample	 represents	 all	 received	 RTP	 packets	 that	 have	 the	 same	 RTP	
timestamp,	i.e.,	consecutive	packets	in	RTP	sequence	number	order	with	a	common	RTP	timestamp.	The	
RTPsample	structure	is	set	to	contain	one	RTPpacket	structure	per	each	received	RTP	packet	having	
the	same	RTP	timestamp.	Each	RTPpacket	is	recommended	to	contain	one	packet	constructor	of	type	2	
(RTPsampleconstructor).	 An	RTPsampleconstructor	 copies	 a	 particular	 byte	 range,	 indicated	 by	
the	 sampleoffset	 and	 length	 fields	 of	 the	 constructor,	 of	 a	 particular	 sample,	 indicated	 by	 the	
samplenumber	 field	 of	 the	 constructor,	 by	 reference	 into	 the	 packet	 payload	 being	 constructed.	 The	
payload	 of	 each	 received	 RTP	 packet	 having	 the	 same	 RTP	 timestamp	 is	 copied	 to	 the	 extradata	
section	of	the	sample.	The	track	reference	of	each	constructor	is	set	to	point	to	the	hint	track	itself,	i.e.,	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 211

	

is	set	equal	to	‐1,	and	sampleoffset	and	length	are	set	to	match	to	the	location	and	size	of	the	packet	
payload	within	the	sample.	

Figure	H.2	presents	a	pseudo‐code	example	of	an	RTP	reception	hint	sample,	which	contains	two	RTP	
packets.	

	 	

Figure H.2 — An example of a RTP reception hint sample containing two packets
(their header and payload)

The	 use	 of	 an	 error	 occurrence	 indexing	 event	 to	 indicate	 an	 RTP	 packet	 loss	 is	 not	 recommended,	
because	the	RTPsequenceseed	field	can	be	used	for	detecting	packet	losses	without	any	increase	in	the	
storage	space.	Furthermore,	the	minimum	unit	the	error	occurrence	event	can	refer	to	is	a	sample	(in	
an	RTP	reception	hint	track).	Since	a	sample	can	contain	many	packets,	it	is	ambiguous	which	ones	of	
these	packets	the	error	occurrence	indexing	event	concerns.	

H.3.5 Representation of RTP timestamps

RTP	timestamps	are	represented	in	a	RTP	reception	hint	track	by	a	sum	of	three	values,	one	of	which	is	
the	decoding	time	DT	in	the	media	timeline	of	the	track.	The	decoding	time	is	run‐length	coded	into	the	

ISO/IEC 14496-12:2015(E)

212	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Decoding	Time	to	Sample	box	and	additionally	to	one	or	more	Track	Fragment	Run	boxes,	if	a	sample	
resides	 in	a	movie	 fragment.	The	Decoding	Time	 to	Sample	box	 includes	a	number	of	sample_count	
and	 sample_delta	 pairs,	 where	 sample_delta	 is	 the	 decoding	 time	 increment	 (i.e.,	 the	 sample	
duration	 in	 terms	 of	 decoding	 time)	 for	 each	 sample	 in	 a	 set	 of	 consecutive	 samples,	 the	 number	 of	
which	equals	to	sample_count.	The	Track	Fragment	Run	box	indicates	one	pair	of	sample_count	and	
sample_duration,	 where	 sample_duration	 is	 the	 decoding	 time	 increment	 (i.e.,	 the	 sample	
duration)	 for	 each	 sample	 in	 a	 set	 of	 consecutive	 samples,	 the	 number	 of	 which	 equals	 to	
sample_count.	 Each	 Track	 Fragment	 box	 can	 contain	 a	 number	 of	 Track	 Fragment	 Run	 boxes.	 The	
decoding	 time	DT(i)	 for	 sample	 number	 i	 is	 derived	 by	 summing	 up	 the	 sample	 durations	 of	 all	 the	
samples	preceding	sample	i	from	the	Decoding	Time	to	Sample	box	and,	if	needed,	the	Track	Fragment	
Run	boxes	referring	to	any	sample	preceding	sample	i.	

The	RTP	timestamp	for	sample	i,	RTPTS(i),	is	represented	by	a	sum	of	three	values	specified	as	follows:	

 RTPTS(i) = (DT(i) + tsro.offset + offset) mod 232 (H.1)

where	tsro.offset	is	the	value	of	offset	in	the	'tsro'	box	of	the	referred	reception	hint	sample	entry	
and	offset	is	the	value	included	in	the	rtpoffsetTLV	box	in	the	RTPpacket	structure,	and	mod	is	the	
modulo	operation.	

A	'tsro'	box	should	be	present	in	RTP	reception	hint	sample	entries.	The	value	of	offset	in	any	'tsro'	
box	of	a	track	should	be	equal	to	the	RTP	timestamp	of	the	first	packet	of	the	respective	stream	in	RTP	
sequence	number	order.	

Provided	that	no	wrap‐around	of	the	RTP	timestamp	values	over	the	maximum	32‐bit	unsigned	integer	
happened	between	sample	 i‐1	and	 i,	 the	difference	between	consecutive	unequal	RTP	 timestamps,	 in	
RTP	sequence	number	order,	is	

 RTPTS_DIFF(i) = RTPTS(i) – RTPTS(i – 1) for any i > 1 (H.2)

RTPTS_DIFF(i)	 remains	 unchanged,	 when	 the	 frame	 rate	 is	 constant,	 the	 number	 of	 frames	 in	 any	
packet	is	constant,	and	the	transmission	order	is	the	same	as	the	presentation	order.	These	constraints	
are	 typically	met	 by	 audio	 streams	and	 temporally	non‐scalable	 video	 streams.	 If	RTPTS_DIFF(i)	 is	 a	
constant	 denoted	 as	RTPTS_DIFF,	 the	 following	 is	 recommended.	 The	 value	 of	sample_delta	 in	 the	
Decoding	Time	to	Sample	box	and,	if	movie	fragments	are	used,	the	value	of	sample_duration	in	the	
Track	Fragment	Run	box	or	boxes	are	set	to	RTPTS_DIFF,	which	results	into	compact	Decoding	Time	to	
Sample	 and	 Track	 Fragment	 Run	 boxes.	 The	rtpoffsetTLV	 box	 should	 not	 be	 used	within	 the	 RTP	
reception	hint	samples,	if	RTCP	reception	hint	tracks	are	used	(see	H.3.6).	Otherwise	(if	RTCP	reception	
hint	tracks	are	not	used),	offset	in	the	rtpoffsetTLV	box	should	be	set	to	0.	

When	temporal	scalability	is	used	in	a	video	stream,	the	transmission	order	and	the	playback	order	of	
packets	are	not	identical,	RTP	timestamps	do	not	increase	as	a	function	of	RTP	sequence	number,	and	
RTPTS_DIFF(i)	 is	 not	 constant.	 However,	 RTP	 timestamps	 typically	 have	 a	 constant	 behaviour	 in	
periods	determined	by	the	GOP_size,	which	is	one	plus	the	number	of	pictures	between	two	consecutive	
pictures	in	the	lowest	temporal	level	in	RTP	sequence	number	order.	For	example,	if	two	non‐reference	
pictures	are	coded	for	each	pair	of	reference	pictures	as	illustrated	in	Figure	H.3,	GOP_size	is	equal	to	3.	
Figure	H.4	presents	an	example	of	a	hierarchically	temporally	scalable	bitstream	with	GOP_size	equal	to	
4.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 213

	

	

Figure H.3 — An example of a temporally scalable bitstream with GOP_size equal to 3

(RTP	sequence	numbers	(SN)	are	normalized	to	start	from	0,	and	one	packet	
per	frame	is	assumed.		
RTP	timestamps	(TS)	are	normalized	to	start	from	0	and	indicated	as	clock	
ticks	lasting	one	frame	interval.	Inter	prediction	arrows	are	indicated	for	the	
first	GOP	only,	while	pictures	in	other	GOPs	are	predicted	similarly.)

	

Figure H.4 — An example of a hierarchically temporally scalable bitstream with GOP_size equal
to 4

(RTP	sequence	numbers	(SN)	are	normalized	to	start	from	0,	and	one	packet	per	frame	
is	assumed.		
RTP	timestamps	(TS)	are	normalized	to	start	from	0	and	indicated	as	clock	ticks	lasting	
one	frame	interval.)

The	RTP	timestamp	increment	caused	by	one	GOP	is	derived	as	follows,	when	no	wrap‐around	of	the	
RTP	timestamp	values	over	the	maximum	32‐bit	unsigned	integer	happened	between	sample	i	and	i	+	
GOP_size,	inclusive:	

 RTPTS_GOP_DIFF(i) = RTPTS(i + GOP_size) – RTPTS(i) (H.3)

If	RTPTS_GOP_DIFF(i)	is	a	constant	equal	to	RTPTS_GOP_DIFF,	when	no	sample	i,	i	+	1,	…,	i	+	GOP_size	is	
a	picture	starting	a	so‐called	closed	group	of	pictures,	such	as	an	IDR	picture	of	H.264/AVC	streams,	the	
following	 is	 recommended.	 The	 value	 of	sample_delta	 in	 the	Decoding	 Time	 to	 Sample	 Box	 and,	 if	
movie	fragments	are	used,	the	value	of	sample_duration	in	the	Track	Fragment	Run	box	or	boxes	are	
set	 to	 RTPTS_GOP_DIFF	 /	 GOP_size.	 The	 rtpoffsetTLV	 box	 should	 not	 be	 used	 for	 pictures	 in	 the	
lowest	temporal	level,	if	RTCP	reception	hint	tracks	are	used	(see	H.3.6).	Otherwise	(if	RTCP	reception	
hint	tracks	are	not	used),	offset	in	the	rtpoffsetTLV	box	should	be	set	to	0.	The	value	of	offset	in	
the	rtpoffsetTLV	box	should	be	set	for	pictures	in	other	temporal	levels	to	such	that	Formula	H.(1)	is	

ISO/IEC 14496-12:2015(E)

214	 ©	ISO/IEC	2015	–	All	rights	reserved

	

fulfilled.	Figure	H.5	indicates	how	the	decoding	time	and	offset	are	set	for	a	hierarchically	temporally	
scalable	video	bitstream	presented	in	Figure	H.4.	

IDR

B

B

P

B B

B

B

P

...

...0

1

Temporal
level

0 43 2 61 7 8 5DT ...

RTP TS 0 31 2 64 5 7 8 ...
(x clock tick of one frame interval)

2 ...

offset 0 -1-2 0 03 -2 -1 3 ...

	

Figure H.5 — An example of setting the decoding time (DT) and the value of offset in the
rtpoffsetTLV box of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

	(In	this	example,	the	decoding	time	increment	between	samples	is	set	equal	to	
RTPTS_GOP_DIFF	/	GOP_size	to	have	a	compact	encoding	decoding	times.	The	
value	of	offset	in	the	rtpoffsetTLV	box	is	adjusted	for	each	sample	to	store	a	
representation	of	the	RTP	timestamp.	For	this	illustration,	RTP	timestamps	and	
decoding	times	are	normalized	to	start	from	0	and	indicated	as	clock	ticks	lasting	
one	frame	interval.)	

If	no	linear	and	periodical	behaviour	of	RTP	timestamps	is	detected	from	the	received	packets,	and	no	
two	received	packets	of	different	samples	have	the	same	reception	time,	 it	is	recommended	to	set	the	
value	of	sample_delta	in	the	Decoding	Time	to	Sample	Box	and,	if	movie	fragments	are	used,	the	value	
of	sample_duration	 in	 the	Track	Fragment	Run	box	or	boxes	to	represent	the	reception	time	of	 the	
first	packet	of	the	sample.	That	is,	the	derived	decoding	time	DT(i)	should	be	equal	to	the	reception	time	
of	the	first	packet	of	the	sample	subtracted	by	the	reception	time	of	the	first	packet	of	the	first	received	
sample	of	the	stream.	

It	 is	noted	that	composition	timestamps	are	not	explicitly	 indicated	in	the	file	 for	samples	in	any	hint	
tracks.	Consequently,	for	RTP	reception	hint	tracks,	the	composition	timestamps	are	inferred	from	the	
information	related	 the	RTP	timestamps	 indicated	 in	 the	stored	packet	stream.	For	an	RTP	reception	
hint	track	that	is	not	associated	with	an	RTCP	reception	hint	track,	the	composition	time	of	a	received	
RTP	packet	is	inferred	to	be	the	sum	of	the	sample	time	DT(i)	and	the	value	of	the	offset	field	in	the	
rtpoffsetTLV	 box	 including	 the	 sample.	 For	 an	RTP	 reception	hint	 track	 that	 is	 associated	with	 an	
RTCP	 reception	 hint	 track,	 the	 composition	 time	 is	 inferred	 as	 follows.	 Let	 the	 received	 RTP	 packet	
having	 the	 earliest	 RTP	 timestamp	 within	 the	 same	 track	 have	 composition	 time	 equal	 to	 0.	 Any	
remaining	RTP	packet	has	a	composition	time	equal	to	the	RTP	timestamp	difference	of	the	present	RTP	
packet	and	the	earliest	RTP	packet	in	presentation	order	with	clock	drift	correction	similar	to	H.3.6.3.	
The	composition	time	refers	to	the	media	timeline	of	the	track.	

H.3.6 Recording operations to facilitate inter-stream synchronization in playback

H.3.6.1 General

Lip	synchronization,	i.e.,	correct	synchronization	between	recorded	RTP	streams,	during	playback	can	
be	facilitated	at	least	with	the	following	two	means:	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 215

	

1. An	RTCP	reception	hint	track	is	generated	for	each	RTP	reception	hint	track.	The	potential	clock	
drift	between	the	RTP	timestamp	clocks	of	different	streams	is	corrected	at	the	time	when	the	
file	is	parsed	and	the	media	streams	included	in	the	file	are	decoded	and	played.	The	clock	drift	
correction	is	done	similarly	to	as	would	be	done	for	RTP	streams	that	are	received	and	played	
simultaneously.	 This	mode	 of	 operation	 is	 straightforward	 for	 the	 recording	 units.	 However,	
accessing	a	file	from	an	exact	playback	position	might	be	more	cumbersome,	because	it	requires	
compensation	of	the	clock	drift	of	all	the	recorded	streams	at	the	time	of	the	access.	

2. The	 potential	 clock	 drift	 between	 recorded	 RTP	 streams	 is	 corrected	 by	 modifying	 the	 RTP	
timestamps	of	one	or	more	recorded	streams.	This	mode	of	operation	is	requires	processing	of	
RTCP	Sender	Reports	at	the	time	of	recording	and	is	hence	more	tedious	for	the	recording	units	
than	 creation	 of	 RTCP	 reception	 hint	 tracks.	 However,	 the	 operation	 of	 the	 player	 is	
straightforward.	

Recording	units	should	use	the	timestamp	synchrony	box	[9.4.1.2]	to	indicate	which	lip	synchronization	
approach	 has	 been	 used.	 The	 timestamp	 synchrony	 box	 includes	 the	 timestamp_sync	 field.	
timestamp_sync	 equal	 to	 1	 indicates	 that	 players	 should	 use	 RTCP	 reception	 hint	 tracks	 for	 lip	
synchronization.	 timestamp_sync	 equal	 to	 2	 indicates	 that	 players	 should	 use	 composition	
timestamps	for	lip	synchronization.	

Some	 implementations	 may	 create	 RTCP	 reception	 hint	 tracks	 first	 during	 the	 real‐time	 recording	
operation	 and	 then	 compensate	 the	 clock	 drift	 by	 modifying	 RTP	 timestamps	 as	 an	 off‐line	 post‐
processing	step.	

The	following	clauses	provide	more	details	about	both	approaches.	

H.3.6.2 Facilitating lip synchronization based on RTCP Sender Reports

A	 recording	 unit	 stores	 all	 RTCP	 Sender	 Reports	 for	 a	 particular	 RTP	 stream	 as	 samples	 in	 the	
respective	RTCP	reception	hint	track.	

H.3.6.3 Compensating clock drift in timestamps

It	 is	 not	 recommended	 to	 modify	 the	 RTP	 timestamps	 of	 the	 recorded	 audio	 streams.	 Such	 a	
modification	 would	 cause	 an	 audio	 timescale	 modification	 in	 the	 player,	 which	 is	 a	 non‐trivial	
operation.	

The	recorded	representation	of	the	RTP	timestamps	of	the	video	and	other	non‐audio	streams	should	
be	modified	using	the	following	procedure.	

1. First,	 the	 wallclock	 timestamp	 a	 of	 a	 video	 frame	 is	 derived	 from	 the	 RTP	 timestamp	
corresponding	 to	 the	 video	 frame	 as	 a	 sum	 of	 the	 wallclock	 timestamp	 of	 the	 previous	 video	
frame	and	the	difference	of	the	RTP	timestamps	of	the	current	and	previous	video	frames	in	the	
units	of	the	wallclock	timeline.	

2. Second,	 the	 playback	 time	b	 for	 the	 video	 frame	on	 the	wallclock	 time	 is	 derived	based	on	 the	
RTCP	Sender	Reports.	If	no	RTCP	Sender	Report	that	exactly	indicates	the	wallclock	time	for	the	
video	frame	is	available,	the	wallclock	time	can	be	extrapolated	assuming	that	the	rate	at	which	
the	 RTP	 timestamp	 clock	 and	 the	 sender	 wallclock	 in	 RTCP	 Sender	 Reports	 deviates	 stays	
unchanged.	

ISO/IEC 14496-12:2015(E)

216	 ©	ISO/IEC	2015	–	All	rights	reserved

	

3. Third,	 based	 on	 the	 RTCP	 Sender	 Reports	 for	 audio,	 the	 audio	 RTP	 timestamp	 that	 is	 played	
simultaneously	with	the	video	frame	at	time	b	of	the	wallclock	timeline	is	derived.	There	need	not	
be	an	audio	frame	having	exactly	the	derived	audio	RTP	timestamp.	The	wallclock	timestamp	c	of	
an	audio	sample	 is	calculated	 from	the	derived	audio	RTP	timestamp	as	a	sum	of	 the	wallclock	
timestamp	of	the	preceding	audio	frame	and	the	difference	of	the	RTP	timestamps	of	the	derived	
audio	RTP	timestamp	and	the	RTP	timestamp	of	the	preceding	audio	frame.	

The	difference	between	a	and	c,	if	any,	should	be	compensated	in	the	fields	that	represent	the	video	RTP	
timestamp	in	the	file.	In	practice,	the	easiest	way	might	be	to	add	the	difference	to	the	offset	field	in	
the	rtpoffsetTLV	box,	which	is	illustrated	in	Figure	H.6.	The	other	option,	rewriting	the	Decoding	Time	
to	Sample	box	and	the	Track	Fragment	Run	boxes	(if	any),	might	be	more	cumbersome	to	implement,	
because	of	particular	way	of	coding	the	sample	times	by	a	combination	of	sample	counts	and	durations,	
and	might	require	more	storage	space	too.	

	

Figure H.6 — An example of correcting the lip synchronization in the RTP timestamp
representation

H.3.7 Representation of reception times

As	specified	in	9.4.1.4,	the	reception	time	of	a	packet	is	indicated	by	the	sum	of	the	decoding	time	of	the	
sample	 containing	 the	 packet	 and	 the	 value	 of	 relative_time	 of	 the	 RTPpacket	 structure	 of	 the	
packet.	

The	reception	 time	of	 the	earliest	 received	RTP	packet	 should	be	zero,	and	 the	reception	 times	of	all	
subsequent	packets	should	be	relative	to	the	reception	time	of	the	earliest	received	RTP	packet.	

The	 clock	 source	 for	 the	 reception	 time	 is	 undefined	 and	may	 be,	 for	 instance,	 the	 wallclock	 of	 the	
receiver.	 If	 the	 range	of	 reception	 times	of	a	 reception	hint	 track	overlaps	entirely	or	partly	with	 the	
range	of	reception	times	of	another	reception	hint	track,	the	clock	sources	for	these	hint	tracks	shall	be	
the	same.	

The	 reception	 time	 of	 a	 packet	 should	 correspond	 to	 the	 time	 instant	when	 the	 protocol	 stack	 layer	
underneath	RTP,	typically	UDP,	outputs	the	packet.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 217

	

H.3.8 Creation of media samples

Media	samples	are	created	 from	the	received	RTP	packets	as	 instructed	by	 the	relevant	RTP	payload	
specification	and	RTP	itself.	However,	most	media	coding	standards	only	specify	the	decoding	of	error‐
free	streams	and	consequently	 it	should	be	ensured	that	the	content	 in	media	tracks	can	be	correctly	
decoded	by	any	standard‐compliant	media	decoder.	Handling	of	transmission	errors	therefore	requires	
two	 steps:	 detection	 of	 transmission	 errors	 and	 inference	 of	 samples	 that	 can	 be	 decoded	 correctly.	
These	steps	are	described	in	the	subsequent	paragraphs.	

Lost	RTP	packets	can	be	detected	from	a	gap	in	RTP	sequence	number	values.	RTP	packets	containing	
bit	 errors	 are	 usually	 not	 forwarded	 to	 the	 application	 as	 their	 UDP	 checksum	 fails	 and	 packets	 are	
discarded	in	the	protocol	stack	of	the	receiver.	Consequently,	bit‐erroneous	packets	are	usually	treated	
as	packet	losses	in	the	receiver.	

The	inference	of	media	samples	that	can	be	correctly	decoded	depends	on	the	media	coding	format	and	
is	therefore	not	described	here	in	details.	Generally,	inter‐sample	prediction	is	weak	or	non‐existing	in	
audio	coding	formats,	whereas	most	video	coding	formats	utilize	inter	prediction	heavily.	Consequently,	
a	lost	sample	in	many	audio	formats	can	often	be	replaced	by	a	silent	or	error‐concealed	audio	sample.	
It	should	be	analyzed	whether	a	loss	of	a	video	packet	concerned	a	non‐reference	picture	or	a	reference	
picture,	 or,	more	 generally,	 in	which	 level	 of	 the	 temporal	 scalability	 hierarchy	 the	 loss	 occurred.	 It	
should	then	be	concluded	which	pictures	may	not	be	correctly	decodable.	For	example,	a	loss	of	a	non‐
reference	 picture	 does	 not	 affect	 the	 decoding	 of	 any	 other	 pictures,	 whereas	 a	 loss	 of	 a	 reference	
picture	in	the	base	temporal	level	typically	affects	all	pictures	until	the	next	picture	for	random	access,	
such	as	an	IDR	picture	in	H.264/AVC.	Video	tracks	must	not	contain	any	samples	dependent	on	any	lost	
video	sample.	

H.3.9 Creation of hint samples referring to media samples

Media	 samples	 are	 created	 from	 the	 received	RTP	 packets	 as	 explained	 in	H.3.8.	 RTP	 reception	 hint	
tracks	 are	 created	 as	 explained	 in	H.3.4,	 but	 the	 contents	of	 the	RTPpacket	 structure	depend	on	 the	
existence	of	the	corresponding	media	sample	as	follows.	

If	the	packet	payload	of	the	received	RTP	packet	is	represented	in	a	media	track,	the	track	reference	of	
the	relevant	packet	constructors	are	set	to	point	to	the	media	track	and	include	the	packet	payload	by	
reference.	It	is	not	recommended	to	have	a	copy	of	the	packet	payload	in	the	extradata	section	of	the	
received	 RTP	 sample	 in	 order	 to	 save	 storage	 space	 and	 make	 file	 editing	 operations	 easier	 to	
implement.	

If	the	packet	payload	of	the	received	RTP	packet	is	not	represented	in	a	media	track,	the	instance	of	the	
RTPpacket	structure	is	created	as	explained	in	H.3.4.	

H.4 Playing of recorded RTP streams

H.4.1 Introduction

This	Clause	describes	operations	required	for	playback	of	a	file	containing	recorded	RTP	streams.	It	is	
organized	as	follows:	

ISO/IEC 14496-12:2015(E)

218	 ©	ISO/IEC	2015	–	All	rights	reserved

	

- Before	 RTP	 streams	 can	 be	 played,	 the	 contents	 of	 the	 files	 should	 be	 analyzed.	 Particularly,	
alternative	 tracks	 representing	 the	 same	media	 stream	 should	 be	 identified	 and	one	 of	 these	
tracks	should	be	selected	for	decoding	and	playback.	The	coding	format	should	be	detected	in	
order	to	conclude	up	front	that	it	can	be	decoded	by	the	player.	These	preparation	operations	
are	described	in	more	details	in	H.4.2.	

- If	an	RTP	reception	hint	track	is	being	processed,	there	are	a	few	things	to	be	taken	into	account	
as	described	in	0.	For	example,	packet	losses	should	be	detected	and	handled	appropriately.	

- The	synchronization	of	the	decoded	media	samples	should	be	handled	properly	as	described	in	
0.	

- If	the	RTP	streams	stored	in	a	file	are	accessed	from	a	position	other	than	the	beginning	of	the	
streams,	 proper	 inter‐stream	 synchronization	 and	 decoder	 initialization	 are	 needed	 as	
described	in	H.4.5.	

H.4.2 Preparation for the playback

In	 the	 preparation	 phase	 for	 playback,	 the	 player	 selects	 which	 tracks	 are	 played.	 The	 basic	 track	
structure	 of	 the	 file	 is	 parsed	 first.	 The	 tracks	 are	 grouped	 according	 to	which	 alternate	 group	 they	
belong	 to.	 Tracks	 that	 belong	 to	 the	 same	 alternate	 group	 are	 indicated	 by	 the	 same	 value	 of	
alternate_group	in	the	track	header	box.	One	track	from	each	alternate	group	is	selected	for	playback	
as	follows.	

If	 there	 is	 an	RTP	 reception	hint	 track	 in	 the	alternate	 group,	 it	 is	preferred	 for	playback,	because	 it	
contains	 an	 entire	 representation	 of	 the	 received	 RTP	 stream,	 unlike	media	 tracks	 derived	 from	 the	
received	RTP	streams,	which	might	use	such	subset	of	the	received	RTP	packets	that	can	be	decoded	by	
any	standard‐compliant	decoder	without	capability	for	handling	packet	losses.	

The	 compatibility	 of	 the	 player	with	 the	 selected	 track	 should	be	 ensured.	 For	 example,	 it	 should	 be	
examined	whether	the	codec,	the	profile,	and	the	level	used	in	the	track	are	such	that	the	player	is	able	
to	support.	

The	 codec,	 profile,	 and	 level	 used	 for	 the	 coded	 bitstream	 in	 an	 RTP	 reception	 hint	 track	 can	 be	
concluded	from	the	SDP	description	of	the	RTP	stream.	The	SDP	descriptions	are	stored	in	the	movie‐
level	 index	track.	 If	SDP	 is	unchanged	throughout	the	 file,	 it	may	be	additionally	stored	as	Movie	SDP	
information	and	Track	SDP	information	within	User	Data	boxes.	If	Track	SDP	information	is	present,	it	
may	 be	 parsed	 to	 find	 out	 the	 codec,	 profile,	 and	 level	 used	 for	 the	 bitstream	 contained	 in	 the	 RTP	
reception	hint	track.	If	Movie	SDP	information	or	Track	SDP	information	is	not	present,	the	move‐level	
index	track	is	traversed	to	find	and	parse	each	SDP	index	and,	consequently,	the	codec,	profile,	and	level	
used	for	the	bitstream	contained	in	the	RTP	reception	hint	track.	

If	no	RTP	reception	hint	 track	exists	 in	an	alternate	group,	 the	sample	entry	or	sample	entries	of	 the	
media	 tracks	 in	 the	alternate	group	should	be	examined	 to	 find	out	which	ones	of	 them	the	player	 is	
able	to	support.	

H.4.3 Decoding of a sample within an RTP reception hint track

The	original	RTP	packets	may	be	reconstructed	from	an	RTP	reception	hint	sample	by	creating	the	RTP	
packet	 header	 from	 the	 RTPpacket	 structures	 and	 by	 resolving	 the	 constructors	 of	 the	 RTPpacket	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 219

	

structures.	Hence,	one	approach	for	file	players	to	process	RTP	reception	hint	tracks	is	to	re‐create	the	
packet	stream	that	was	received	and	process	the	re‐created	packet	stream	as	if	it	was	newly	received.	

The	relative_time	field	included	in	the	RTPpacket	structure	may	be	used	to	schedule	the	insertion	of	
the	 packet	 into	 the	 buffer	 for	 the	 RTP	 receiver.	 However,	 it	 may	 be	 more	 advisable	 to	 modify	 the	
decoding	process	of	recorded	RTP	streams	such	a	manner	that	the	decoder	output	buffers	are	kept	as	
full	as	possible	 in	order	 to	avoid	 interruptions	or	 jerky	playback	caused	by	 late	packets	or	occasional	
problems	in	real‐time	decoding	in	systems	running	other	processes	in	addition	to	the	player.	

Packet	losses	should	be	detected	from	gaps	in	the	RTP	sequence	number.	The	reaction	to	packet	losses	
depends	on	the	particular	media	decoder	implementation	and	may	also	depend	on	user	preferences.	

H.4.4 Lip synchronization

The	following	steps	are	required	for	achieving	correct	synchronization	between	streams:	

1. Inter‐track	synchronization	at	the	start	of	the	playback.	

The	starting	position	of	the	media	timeline	of	a	track	may	be	shifted	in	the	movie	timeline	of	the	
file	as	described	in	the	following	two	paragraphs.	

For	a	media	track	and	an	RTP	reception	hint	track	that	is	not	associated	with	an	RTCP	reception	
hint	 track,	an	Edit	List	box	should	be	used	 to	shift	 the	starting	position	of	 the	media	 timeline	
within	 the	move	timeline	as	described	 in	H.3.2.	The	media	 timelines	of	 the	 tracks	selected	 for	
playback	 are	 mapped	 to	 the	 movie	 timeline	 by	 parsing	 the	 Edit	 List	 boxes	 of	 the	 tracks,	 if	
present.	 The	 playback	 of	 each	 media	 track	 and	 each	 RTP	 reception	 hint	 track	 that	 is	 not	
associated	with	an	RTCP	reception	hint	track	starts	at	the	movie	timeline	position	indicated	in	
the	Edit	List	box	of	 the	 track	or	 from	 the	beginning	of	 the	movie	 timeline,	 if	 no	Edit	 List	box	
exists	for	the	track.	

For	RTP	reception	hint	 tracks	 that	are	associated	with	 respective	RTCP	reception	hint	 tracks,	
the	shifting	of	the	starting	position	of	the	media	timeline	within	the	movie	timeline	is	inferred	as	
follows.	The	media	timeline	of	the	RTP	reception	hint	track	containing	the	earliest	RTP	packet	
(in	presentation	time	on	the	sender	wallclock	timeline)	among	all	RTP	reception	hint	tracks	is	
not	shifted	within	the	movie	timeline	(i.e.,	starts	at	time	0	on	the	movie	timeline).	The	starting	
time	of	the	media	timeline	of	the	any	other	RTP	reception	hint	track	is	equal	to	the	timestamp	
difference	of	the	earliest	RTP	packets	of	the	present	track	and	the	track	containing	the	earliest	
RTP	packet	among	all	RTP	reception	hint	tracks.	

2. Reconstruction	of	RTP	timestamps	and	composition	times	on	the	media	timeline	(H.3.5).	

3. Correction	of	RTP	timestamps	and	composition	times	based	on	RTCP	Sender	Reports,	if	RTCP	
reception	hint	tracks	are	used.	

The	correction	is	done	similarly	to	what	is	described	in	H.3.6.3.	However,	instead	of	adding	the	
difference	between	times	a	and	c	into	the	representation	of	the	RTP	timestamps	in	the	file,	the	
difference	 is	 added	during	 the	playback	 to	 the	presentation	 times	of	 the	 video	 frames	on	 the	
movie	timeline.	

ISO/IEC 14496-12:2015(E)

220	 ©	ISO/IEC	2015	–	All	rights	reserved

	

4. Pacing	the	output	of	the	decoded	media	samples.	

It	is	recommended	to	play	a	recorded	program	at	the	pace	of	the	wallclock	of	the	player	and	to	
use	the	audio	playout	clock	as	the	wallclock	of	the	player.	The	audio	playback	is	arranged	to	be	
continuous	 at	 the	 native	 sampling	 frequency	 of	 the	 audio	 signal.	 A	 presentation	 clock	 of	 the	
player	runs	at	the	pace	of	the	audio	playback,	i.e.,	its	value	is	always	equal	to	the	(the	number	of	
the	most	frequent	uncompressed	audio	sample	that	was	played	out)	×	(sampling	frequency	of	
the	audio	signal).	The	playback	of	the	video	track	(and	potential	other	continuous	media	tracks)	
is	synchronized	to	the	presentation	clock	of	the	player.	In	other	words,	when	the	presentation	
clock	 of	 the	 player	meets	 the	 composition	 time	 of	 a	 video	 sample	 on	 the	movie	 timeline,	 the	
video	sample	is	played	out.	

Only	if	a	file	being	simultaneously	recorded	and	played	back	and	if	the	receiver	wallclocks	runs	
faster	 than	 the	 sender	 wallclock,	 pacing	 the	 playback	 according	 to	 the	 rate	 of	 the	 receiver	
wallclock	might	not	be	recommended	and	synchronizing	the	rate	of	the	receiver	wallclock	to	the	
rate	of	the	sender	wallclock	may	be	done	as	follows.	

The	pace	of	the	sender	clock	is	recovered	by	creating	a	relationship	between	the	reception	times	
(according	to	the	receiver	clock)	and	the	respective	wallclock	timestamps	of	the	sender,	which	
are	reconstructed	from	RTCP	Sender	Reports.	It	is	recommended	to	use	the	audio	playout	clock	
as	 the	 receiver	 clock.	 As	 the	 delay	 in	 the	 network	 and	 in	 the	 receiver	 may	 be	 varying,	 the	
relation	 between	 the	 reception	 times	 and	 the	 respective	 timestamps	 of	 the	 sender	 should	 be	
averaged	over	a	large	number	of	received	packets.	A	timescale	multiplication	factor	is	concluded	
as	 a	 result	 of	 the	 averaging	 of	 the	 relation	 between	 the	 reception	 times	 and	 the	 respective	
timestamps	of	the	sender.	

A	 presentation	 time	 on	 a	 timeline	 of	 the	 receiver	 clock	 is	 derived	 for	 each	 sample.	 If	 RTCP	
reception	hint	tracks	are	in	use,	the	presentation	time	is	the	composition	time	of	the	sample	on	
the	movie	 timeline,	 also	 including	clock	drift	 correction	as	described	 in	step	3	above.	 If	RTCP	
reception	hint	tracks	are	not	in	use,	the	presentation	time	is	directly	the	composition	time	of	the	
sample	on	the	movie	timeline.	Then,	for	playback	purposes	only,	the	presentation	times	of	the	
samples	in	all	tracks	being	played	should	be	multiplied	by	the	timescale	multiplication	factor.	

Time	 stretching	 of	 the	 signal	 should	 be	 done	 accordingly.	 Samples	 are	 played	 out	 at	 their	
presentation	times.	

In	practice,	 the	 timescale	multiplication	 factor	 and	 the	mapping	 from	 the	RTP	 timeline	 to	 the	
wallclock	of	the	sender	(step	3	above)	may	be	implemented	as	a	single	operation.	

H.4.5 Random access

Random	 access	 refers	 to	 a	 non‐linear	 access	 to	 the	 media	 streams	 represented	 in	 the	 file.	 In	 other	
words,	 in	 a	 random	 access	 operation	 the	 file	 is	 accessed	 from	 another	 sample	 than	 that	which	was	
previously	played	or	the	file	is	initially	accessed	from	a	position	that	is	not	the	beginning	of	the	movie	
timeline.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 221

	

It	is	recommended	to	provide	the	random	access	functionality	to	the	user	relative	to	the	movie	timeline	
of	 the	 file	 rather	 than	any	other	 timelines,	 such	as	 the	sender	wallclock	 timeline.	By	using	 the	movie	
timeline	as	the	basis,	the	number	of	steps	for	a	random	access	operation	is	kept	low.	

First,	it	is	derived	which	media	frames	are	at	a	desired	random	access	position	(or	closest	to	it,	if	there	
are	none	exactly	at	the	desired	random	access	position).	In	the	case	of	media	tracks,	RTP	reception	hint	
tracks	 for	 audio,	 and	 any	 RTP	 reception	 hint	 tracks	 having	 the	 timestamp_sync	 field	 equal	 to	 2	
(indicating	 pre‐compensated	 lip	 synchronization),	 the	 media	 frame	 closest	 to	 the	 desired	 random	
access	position	can	be	directly	derived	based	on	the	composition	timestamps	(on	the	media	timeline)	
shifted	by	the	initial	starting	position	indicated	in	the	Edit	List	box,	if	any.	In	the	case	of	non‐audio	RTP	
reception	hint	tracks	having	the	timestamp_sync	field	equal	to	1	(indicating	the	use	of	RTCP	reception	
hint	 tracks),	 the	presentation	 times	 of	 samples	 should	be	derived	 as	described	 in	 0,	 until	 the	 closest	
presentation	time	to	the	desired	random	access	position	is	found.	

Second,	decoding	of	many	media	bitstreams	can	be	started	only	from	frames	of	a	particular	type,	such	
an	 IDR	 picture	 of	 H.264/AVC.	 Player	 implementations	 may	 therefore	 have	 different	 approaches,	
including	the	following:	

1. Discover	 the	 closest	 frame	 at	 or	 preceding	 the	 desired	 random	 access	 position	 from	 which	
decoding	 can	 be	 started,	 start	 decoding	 from	 that	 frame,	 and	 start	 rendering	 only	 from	 the	
desired	 random	 access	 point.	 This	 approach	 may	 imply	 some	 processing	 delay	 before	 the	
rendering	is	started.	

2. Start	 decoding	 and	 rendering	 at	 or	 after	 the	 desired	 random	 access	 point	 using	 the	 earliest	
frame	 from	which	decoding	can	be	started.	Typically,	 audio	playback	would	start	earlier	 than	
video	playback,	but	the	processing	delay	before	the	rendering	 is	started	is	smaller	than	in	the	
previous	option.	

H.5 Re-sending recorded RTP streams

H.5.1 Introduction

It	may	be	a	desirable	operation	to	re‐send	the	RTP	streams	that	have	been	recorded	earlier	to	a	file.	For	
example,	if	RTP	streams	are	received	through	a	broadcast	or	streaming	service	and	recorded	into	a	file,	
it	may	be	desirable	to	re‐send	them	from	one	device	to	another	device	in	a	home	environment	using	a	
WLAN	connection.	This	Clause	provides	recommendations	for	re‐sending	of	recorded	RTP	streams.	

A	communication	system	based	on	RTP	includes	a	source	endpoint	(a.k.a.,	a	sender)	and	a	destination	
endpoint	(a.k.a.,	a	receiver)	and	may	contain	one	or	more	mixers	and	translators.	The	sender	and	the	
receiver	are	the	endpoints	of	the	RTP	and	RTCP	sessions.	The	behaviour	of	RTP	translators	and	mixers	
is	specified	in	RFC	3550	and	clarified	in	RFC	5117.	In	general,	the	recording	unit	receiving	RTP	streams	
and	storing	 them	 into	a	 file	 acts	as	a	destination	endpoint,	 and	a	 re‐sending	unit	 reading	stored	RTP	
streams	from	a	file	and	sending	them	acts	as	a	source.	Typically,	the	payloads	of	the	re‐sent	RTP	stream	
are	not	modified,	which	makes	a	combination	of	a	recording	unit	and	a	re‐sending	unit	acting	similarly	
to	a	transport	translator	as	described	in	RFC	5117.	However,	the	essential	characteristic	of	a	translator	
is	that	receivers	cannot	detect	its	presence.	Consequently,	a	combination	of	a	recording	unit	and	a	re‐
sending	unit	cannot	act	as	a	 transport	 translator,	unless	re‐sending	happens	simultaneously	with	 the	
recording	of	the	original	streams.	As	this	case	is	considered	rare,	the	discussion	in	this	Clause	regards	a	

ISO/IEC 14496-12:2015(E)

222	 ©	ISO/IEC	2015	–	All	rights	reserved

	

recording	unit	as	a	destination	terminating	the	original	RTP	and	RTCP	sessions	and	a	re‐sending	unit	as	
a	source	of	new	RTP	and	RTCP	sessions.	

This	Clause	is	organized	as	follows:	

- H.5.2	includes	recommendations	how	to	compose	RTP	packets	from	RTP	reception	hint	tracks	
and	how	to	schedule	the	transmission	of	the	RTP	packets.	

- H.5.3	discusses	how	RTCP	packets	should	be	generated	and	how	received	RTCP	packets	should	
be	processed.	

H.5.2 Re-sending RTP packets

The	packets	are	recommended	to	be	constructed	and	transmitted	as	follows.	

The	packet	payloads	are	recommended	to	be	constructed	according	 to	 the	constructors	stored	 in	 the	
reception	hint	track,	i.e.,	the	packet	payloads	are	recommended	to	be	identical	to	those	received,	unless	
a	different	packet	size	is	crucial	for	the	network	to	which	the	packets	are	re‐sent.	

- The	values	of	 the	header	 fields	for	the	RTP	packets	created	as	suggested	by	an	RTP	reception	
hint	 track	 should	 be	 kept	 the	 same	 as	 in	 the	 respective	 RTPpacket	 structure	 except	 for	 the	
following	cases:	

- The	 initial	 RTP	 timestamp	 offset	 and	 the	 RTP	 sequence	 number	 offset	 should	 be	 selected	
randomly	 regardless	 of	 the	 values	 stored	 in	 the	 offset	 field	 of	 the	 'tsro'	 box	 of	 the	 referred	
reception	 hint	 sample	 entry	 or	 the	 values	 of	 the	 RTPsequenceseed	 field	 of	 the	 RTPpacket	
structure	of	any	for	any	of	the	packets	of	the	respective	RTP	reception	hint	track.	

- The	value	of	the	RTP	timestamp	field	should	be	a	sum	of	the	random	initial	offset,	the	value	of	
offset	in	the	RTPpacket	structure,	and	the	decoding	time	of	the	respective	RTP	sample.	If	the	
sum	exceeds	the	maximum	unsigned	32‐bit	integer,	it	should	be	wrapped	over.	

- The	relative	increments	of	the	RTP	sequence	number	should	be	the	same	as	those	recorded	in	
the	 values	 of	 the	 RTPsequenceseed	 fields.	 Consequently,	 if	 there	 was	 a	 packet	 loss	 in	 the	
stream	 that	 was	 recorded,	 the	 stream	 that	 is	 re‐sent	 also	 has	 a	 respective	 gap	 in	 the	 RTP	
sequence	number,	and	the	receiver	is	able	to	deduce	a	packet	loss.	

- The	value	of	the	CSRC	count	field	should	always	be	zero,	because	no	contributing	sources	of	the	
previous	RTP	session	that	was	recorded	are	actively	modifying	the	streams	for	the	RTP	session	
for	 the	 stream	being	 re‐sent.	The	 source	 identifier	 space	 (for	both	SSRC	and	CSRC)	 is	 session	
specific.	 Consequently,	 the	 CSRC	 list	 of	 the	 RTP	 header	 should	 be	 empty	 regardless	 of	 the	
potentially	 stored	 CSRC	 values	 for	 the	 received	 streams,	 which	 are	 included	 in	 the	
receivedCSRC	TLV	box	in	the	RTPpacket	structure.	

- The	 value	 of	 the	 payload	 type	 field	may	 be	 dynamically	 selected	 depending	 on	 the	 signalling	
scheme	in	use.	

- The	 value	 of	 the	 SSRC	 field	 should	 be	 randomly	 selected	 and	 potential	 collisions	 should	 be	
handled	 as	 specified	 in	RFC	3550.	 The	 SSRC	value	of	 a	 received	 stream	may	be	 stored	 in	 the	
ReceivedSsrcBox	of	 the	referred	reception	hint	sample	entry	but	 it	should	be	 ignored	when	
the	stream	is	re‐sent.	

- The	recorded	RTP	header	extensions,	 stored	 in	rtphdrextTLV	 in	 the	RTPpacket	 structure,	 if	
any,	should	be	re‐sent	only	 if	 the	re‐sending	unit	can	verify	that	they	are	valid	 for	the	re‐sent	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 223

	

stream.	 If	 the	 re‐sending	 unit	 is	 not	 able	 to	 parse	 the	 semantics	 of	 the	 recorded	RTP	header	
extensions,	they	should	not	be	re‐sent.	

The	reception	time	of	a	packet,	represented	by	the	sum	of	the	decoding	time	of	the	RTP	reception	hint	
sample	containing	the	packet	and	the	value	of	the	relative_time	of	the	RTPpacket	structure,	equals	
to	the	transmission	time	of	the	packet	with	a	skew	caused	by	the	transmission	delay	and	the	processing	
delay	 in	 the	 protocol	 stack	 of	 the	 receiver.	 The	 skew	 of	 adjacent	 packets	might	 not	 be	 equal	 due	 to	
transmission	 delay	 jitter	 and	 varying	 processing	 delay.	 Moreover,	 the	 protocol	 stack	 used	 when	
receiving	the	stream	might	differ	from	the	protocol	stack	used	for	re‐sending	the	stream.	Due	to	these	
reasons,	 the	 reception	 times	 are	often	not	 applicable	 as	 such	 to	pace	 the	 transmission	of	 the	 re‐sent	
packets.	In	all	cases,	the	re‐sending	unit	should	verify	that	the	re‐sent	packet	stream	complies	with	the	
buffering	model	in	use,	 if	any.	If	the	re‐sending	unit	can	conclude	that	the	network	environments	and	
protocol	stacks	used	when	receiving	the	stream	and	when	re‐sending	the	recorded	stream	are	similar,	
reception	 times	may	 be	 used	 as	 a	 basis	 for	 scheduling	 the	 packet	 transmission.	 The	 re‐sending	 unit	
should	make	an	effort	to	remove	or	conceal	the	transmission	delay	jitter	in	the	recorded	stream.	If	the	
re‐sending	unit	 is	unable	 to	conclude	 that	 the	network	environments	and	protocol	 stacks	used	when	
receiving	the	stream	and	when	re‐sending	the	recorded	stream	are	similar	or	is	uncertain	which	kind	of	
packet	scheduling	is	appropriate,	it	may	use	the	decoding	time	as	the	basis	for	scheduling.	

H.5.3 RTCP Processing

RTCP	Sender	Reports	and	other	RTCP	messages	are	regenerated	following	the	constraints	specified	in	
RFC	3550	rather	than	directly	using	the	RTCP	messages	recorded	in	RTCP	reception	hint	tracks,	if	any.	

An	RTCP	Sender	Report	contains	the	wallclock	time	when	the	report	was	sent	and	the	RTP	timestamp	
corresponding	to	the	same	time	as	the	indicated	wallclock	time.	The	RTP	timestamp	for	an	RTCP	Sender	
Report	is	generated	as	follows.	A	presentation	time	on	a	timeline	of	a	reference	clock	is	derived	for	the	
sample	corresponding	the	indicated	wallclock	time	in	the	RTCP	Sender	Report.	The	reference	clock	may	
be	 the	 wallclock	 of	 the	 re‐sending	 unit	 initialized	 to	 0	 at	 the	 beginning	 of	 the	 session.	 The	 sample	
corresponding	to	the	indicated	wallclock	time	might	not	exist	in	the	corresponding	RTP	reception	hint	
track,	because	the	sampling	instants	of	the	samples	in	the	RTP	reception	hint	tracks	might	not	match	
with	 the	 transmission	 instants	of	 the	RTCP	Sender	Reports.	However,	as	 instructed	by	RFC	3550,	 the	
RTP	timestamp	is	derived	as	 if	 there	was	a	sample	 in	 the	RTP	stream	corresponding	to	 the	 indicated	
wallclock	time.	The	RTP	timestamp	for	an	RTCP	Sender	Report	should	be	linearly	interpolated	from	the	
RTP	 timestamps	of	 the	 samples	 immediately	preceding	and	 following	 the	wallclock	 time	 indicated	 in	
the	RTCP	 Sender	Report.	 In	 order	 to	 conclude	 the	 samples	 immediately	 preceding	 and	 following	 the	
wallclock	time	indicated	in	the	RTCP	Sender	Report,	presentation	times	on	the	timeline	of	the	reference	
clock	 should	 be	 derived	 until	 the	 closest	 samples	 are	 discovered.	 If	 RTCP	 reception	 hint	 tracks	 are	
present	for	the	RTP	reception	hint	track	being	re‐sent,	the	presentation	time	is	the	composition	time	of	
the	 sample	on	 the	movie	 timeline,	 also	 including	 clock	drift	 correction	 as	described	 in	 step	3	of	 0.	 If	
RTCP	reception	hint	tracks	are	not	present,	the	presentation	time	is	directly	the	composition	time	of	the	
sample	on	the	movie	timeline.	

When	handling	the	received	RTCP	Receiver	Reports,	it	should	be	noticed	that	the	reported	cumulative	
number	 of	 packets	 lost	 includes	 also	 the	 unsent	 packets	 that	 were	 never	 originally	 received	 and	
correspond	to	the	gaps	in	the	RTP	sequence	number	in	the	RTP	reception	hint	tracks.	Any	congestion	
management,	retransmission,	or	other	packet	loss	resilience	method	should	take	this	into	account.	

ISO/IEC 14496-12:2015(E)

224	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Annex I
(normative)	

	
Stream Access Points

I.1 Introduction

This	Annex	defines	a	Stream	Access	Point	(SAP)	and	specifies	six	types	of	SAPs.	

A	Stream	Access	Point	(SAP)	enables	random	access	 into	a	container	of	media	stream(s).	A	container	
may	 contain	 more	 than	 one	 media	 stream,	 each	 being	 an	 encoded	 version	 of	 continuous	 media	 of	
certain	media	type.	A	SAP	is	a	position	in	a	container	enabling	playback	of	an	identified	media	stream	to	
be	 started	 using	 only	 (a)	 the	 information	 contained	 in	 the	 container	 starting	 from	 that	 position	
onwards,	and	(b)	possible	initialisation	data	from	other	part(s)	of	the	container,	or	externally	available.	
Derived	specifications	should	specify	if	initialisation	data	is	needed	to	access	the	container	at	a	SAP,	and	
how	the	initialisation	data	can	be	accessed.	

A	SAP	for	layered	media	may	apply	to	all	the	layers,	a	particular	set	of	layers,	or	only	a	single	layer	in	a	
media	stream.	When	a	SAP	applies	to	a	set	of	layers	that	use	inter	prediction	from	a	layer	that	is	not	a	
member	of	the	set,	there	may	be	an	indication	if	the	SAP	requires	the	correct	decoding	of	the	reference	
layer.	

When	SAPs	 are	used	with	 layered	media,	 derived	 specifications	 should	 specify	 or	provides	means	 to	
indicate	which	layers	SAPs	apply	to	and	whether	SAPs	require	correct	decoding	of	the	reference	layer.	

I.2 SAP properties

I.2.1 General

For	each	SAP	the	properties,	ISAP,	TSAP,	ISAU,	TDEC,	TEPT,	and	TPTF	are	identified	and	defined	as:	

 TSAP	 is	 the	 earliest	 presentation	 time	of	 any	 access	 unit	 of	 the	media	 stream	 such	 that	 all	 access	
units	 of	 the	media	 stream	with	 presentation	 time	 greater	 than	 or	 equal	 to	 TSAP	 can	 be	 correctly	
decoded	using	data	in	the	Bitstream	starting	at	ISAP	and	no	data	before	ISAP.	

 ISAP	 is	 the	 greatest	 position	 in	 the	 Bitstream	 such	 that	 all	 access	 units	 of	 the	media	 stream	with	
presentation	 time	 greater	 than	 or	 equal	 to	 TSAP	 can	 be	 correctly	 decoded	 using	 Bitstream	 data	
starting	at	ISAP	and	no	data	before	ISAP.	

 ISAU	 is	 the	starting	position	 in	the	Bitstream	of	 the	 latest	access	unit	 in	decoding	order	within	the	
media	stream	such	that	all	access	units	of	the	media	stream	with	presentation	time	greater	than	or	
equal	 to	TSAP	 can	be	 correctly	decoded	using	 this	 latest	 access	unit	 and	 access	units	 following	 in	
decoding	order	and	no	access	units	earlier	in	decoding	order.	

NOTE	 ISAU	is	always	greater	than	or	equal	to	ISAP.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 225

	

 TDEC	 is	the	earliest	presentation	time	of	any	access	unit	of	 the	media	stream	that	can	be	correctly	
decoded	using	data	in	the	Bitstream	starting	at	ISAU	and	no	data	before	ISAU.	

 TEPT	 is	the	earliest	presentation	time	of	any	access	unit	of	the	media	stream	starting	at	ISAU	 in	the	
Bitstream.	

 TPTF	 is	 the	presentation	time	of	 the	 first	access	unit	of	 the	media	stream	in	decoding	order	 in	the	
Bitstream	starting	at	ISAU.	

For	 the	 purposes	 of	 these	 definitions,	 the	 SAP	 is	 the	 access	 unit	 that	 is	 described	 as	 located	 at	 ISAU	
and/or	ISAP.	

Note	–	The	distinction	between	 ISAU	and	 ISAP	 is	only	needed	 to	distinguish	between	 referring	directly	 to	 the	access	
unit,	and	referring	to	its	containing	structure.

I.2.2 SAP properties for layers

The	following	properties	apply	to	layered	media	streams	for	which	SAPs	are	indicated	for	one	or	more	
layers,	referred	to	as	the	target	 layers.	 In	the	following	properties,	an	access‐unit	partition	refers	to	a	
unit	 that	 contains	 the	 coded	data	 of	 a	 single	 time	 instance	 for	 the	 target	 layers,	 and	 a	media	 stream	
partition	refers	to	a	sequence	of	access‐unit	partition	of	the	target	layers	in	decoding	order.	

When	the	target	layers	cover	all	the	layers	of	a	media	stream,	the	following	properties	are	equivalent	to	
those	in	I.2.1.	

For	each	SAP	the	properties,	ISAP,	TSAP,	ISAU,	TDEC,	TEPT,	and	TPTF	are	identified	and	defined	as:	

 TSAP	is	the	earliest	presentation	time	of	any	access‐unit	partitions	of	the	target	layers	such	that	all	
access‐unit	partitions	of	 target	 layers	with	presentation	time	greater	than	or	equal	 to	TSAP	can	be	
correctly	decoded	using	data	in	the	media	stream	partition	starting	at	ISAP	and	no	data	before	ISAP.	

 ISAP	is	the	greatest	position	in	the	container	of	the	media	stream	partition	such	that	all	access‐unit	
partition	of	the	target	layers	with	presentation	time	greater	than	or	equal	to	TSAP	can	be	correctly	
decoded	using	data	of	the	media	stream	partition	starting	at	ISAP	and	no	data	before	ISAP.	

 ISAU	 is	 the	 starting	 position,	 in	 the	 media	 stream	 partition,	 of	 the	 latest	 access‐unit	 partition	 in	
decoding	order	such	that	all	access‐unit	partition	of	the	target	layers	with	presentation	time	greater	
than	or	equal	to	TSAP	can	be	correctly	decoded	using	this	latest	access‐unit	partition	and	access‐unit	
partitions	following	in	decoding	order	and	no	access‐unit	partition	earlier	in	decoding	order.	

NOTE	 ISAU	is	always	greater	than	or	equal	to	ISAP.	

 TDEC	 is	 the	 earliest	presentation	 time	of	 any	 access‐unit	partition	of	 the	 target	 layers	 that	 can	be	
correctly	decoded	using	data	in	the	media	stream	partition	starting	at	ISAU	and	no	data	before	ISAU.	

 TEPT	is	the	earliest	presentation	time	of	any	access‐unit	partition	of	the	target	layers	starting	at	ISAU	
in	the	media	stream	partition.	

ISO/IEC 14496-12:2015(E)

226	 ©	ISO/IEC	2015	–	All	rights	reserved

	

 TPTF	is	the	presentation	time	of	the	first	access‐unit	partition	of	the	target	layers	in	decoding	order	
in	the	media	stream	partition	starting	at	ISAU.	

I.3 SAP types

Six	types	of	SAPs	are	defined	with	properties	as	follows:	

 Type	1:	TEPT	=	TDEC	=	TSAP	=	TPTF	

 Type	2:	TEPT	=	TDEC	=	TSAP	<	TPTF	

 Type	3:	TEPT	<	TDEC	=	TSAP	<=	TPTF	

 Type	4:	TEPT	<=	TPTF	<	TDEC	=	TSAP	

 Type	5:	TEPT	=	TDEC	<	TSAP	

 Type	6:	TEPT	<	TDEC	<	TSAP	

NOTE	 The	type	of	SAP	is	dependent	only	on	which	Access	Units	are	correctly	decodable	and	their	arrangement	in	
presentation	order.	The	types	informally	correspond	with	some	common	terms:	

 Type	1	corresponds	to	what	is	known	in	some	coding	schemes	as	a	“Closed	GoP	random	access	point”	(in	which	
all	 access	units,	 in	decoding	order,	 starting	 from	 ISAP	 can	be	 correctly	decoded,	 resulting	 in	 a	 continuous	
time	sequence	of	correctly	decoded	access	units	with	no	gaps)	and	in	addition	the	access	unit	in	decoding	
order	is	also	the	first	access	unit	in	presentation	order.	

 Type	2	corresponds	to	what	is	know	in	some	coding	schemes	as	a	“Closed	GoP	random	access	point”,	for	which	
the	first	access	unit	in	decoding	order	in	the	media	stream	starting	from	ISAU	is	not	the	first	access	unit	in	
presentation	order.	

 Type	3	corresponds	to	what	is	known	in	some	coding	schemes	as	an	“Open	GoP	random	access	point”,	in	which	
there	 are	 some	 access	 units	 in	 decoding	 order	 following	 ISAU	 that	 cannot	 be	 correctly	 decoded	 and	 have	
presentation	times	less	than	TSAP.	

 Type	4	corresponds	to	what	is	known	in	some	coding	schemes	as	an	"Gradual	Decoding	Refresh	(GDR)	random	
access	point”,	in	which	there	are	some	access	units	in	decoding	order	starting	from	and	following	ISAU	that	
cannot	be	correctly	decoded	and	have	presentation	times	less	than	TSAP.	

 Type	5	corresponds	to	the	case	for	which	there	is	at	least	one	access	unit	in	decoding	order	starting	from	ISAP	
that	cannot	be	correctly	decoded	and	has	presentation	time	greater	than	TDEC	and	where	TDEC	is	the	earliest	
presentation	time	of	any	access	unit	starting	from	ISAU.	

 Type	6	corresponds	to	the	case	for	which	there	is	at	least	one	access	unit	in	decoding	order	starting	from	ISAP	
that	 cannot	 be	 correctly	 decoded	 and	 has	 presentation	 time	 greater	 than	TDEC	 and	where	TDEC	 is	 not	 the	
earliest	presentation	time	of	any	access	unit	starting	from	ISAU.	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 227

	

Annex J
(normative)	

	
MIME Type Registration of Segments

J.1 Introduction

This	Annex	provides	the	formal	MIME	registration	of	media	segments	formatted	according	to	8.16.	

J.2 Registration

MIME media type name: video

MIME subtype name: iso.segment

Required parameters: none

Optional parameters: as specified by RFC 6381 and its successors

Encoding considerations: as for video/mp4

Security considerations: See section 5 of RFC 4337.

Interoperability considerations: A number of interoperating
implementations exist within the ISO/IEC 14496 community, and
that community has reference software for reading and writing
the file format.

Published specification: ISO/IEC 14496-12:2012 (expected)

Applications: Multimedia

Additional information:

 Magic number(s): none

 File extension(s): m4s

 Macintosh File Type Code(s): None

Person to contact for info: David Singer, singer@apple.com

Intended usage: Common

Author/Change controller: David Singer, ISO/IEC 14496 file format chair

ISO/IEC 14496-12:2015(E)

228	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Annex K
(informative)

Segment Index Examples

K.1 Introduction

This	annex	gives	some	examples	of	the	use	of	the	segment	index	box,	and	what	values	are	inserted	in	it	
when	it	is	used	in	various	different	‘styles’	or	configurations.	

In	the	following	examples,	the	size	of	i‐th	‘sidx’	box	is	defined	as	Si,index,	the	size	of	i‐th	subsegment,	e.g.	i‐
th	 ‘moof’	 and	 ‘mdat’	 boxes,	 is	 defined	 as	 Si,media,	 the	 duration	 of	 i‐th	 subsegment	 is	 defined	 as	Di,	 the	
number	of	the	last	subsegment	is	defined	as	N,	and	the	duration	of	the	segment	is	defined	as	Dsegment.	

K.2 Examples

K.2.1 Simple one-level indexing

This	example	shows	a	simple	segment	index	(Figure	K.	1).	All	entries	of	the	top	level	sidx	point	to	media	
content	(segments	comprising	one	or	more	movie	fragments),	i.e.	reference_type	is	equal	to	0.	The	
value	of	referenced_size	and	subsegment_duration	of	each	entry	are	calculated	as	Table	K.	1.	

	

	

Figure K. 1: Simple Segment Index

	

sidx entries referenced_size subsegment_duration

 e0 Si Di

e1 Si+1 Di+1

Table K. 1: Simple Segment Index

K.2.2 Hierarchical

This	example	shows	hierarchical	segment	index	(Figure	K.	2).	All	entries	of	the	top	level	sidx	point	to	
another	‘sidx’	box,	i.e.	reference_type	is	equal	to	1,	and	all	entries	of	the	second	level	sidx	point	to	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 229

	

media	 content,	 i.e.	 reference_type	 is	 equal	 to	 0.	 The	 value	 of	 referenced_size	 and	
subsegment_duration	of	each	entry	are	calculated	as	Table	K.	2.	

	

Figure K. 2: Hierarchical segment index

	

sidx# entries referenced_size subsegment_duration

i-th e0 Si+1,index + Sj,media + Sj+1,media Dj + Dj+1

e1 Si+2,index + Sj+2,media + Sj+3,media Dj+2 + Dj+3

(i+1)th e0 Sj,media Dj

e1 Sj+1,media Dj+1

(i+2)th e0 Sj+2,media Dj+2

e1 Sj+3,media Dj+3

Table K. 2: Hierarchical segment index

K.2.3 Daisy-chain

This	example	shows	daisy‐chained	segment	index	(Figure	K.	3).	Each	‘sidx’	box	has	two	entries,	the	first	
entry	points	to	media	content,	i.e.	reference_type	is	equal	to	0,	the	second	(the	last)	entry	points	to	
next	 ‘sidx’	 box,	 i.e.	 reference_type	 is	 equal	 to	 1.	 The	 value	 of	 referenced_size	 and	
subsegment_duration	of	each	entry	are	calculated	as	Table	K.	3.	

	

Figure K. 3: Daisy-chained segment index

	

ISO/IEC 14496-12:2015(E)

230	 ©	ISO/IEC	2015	–	All	rights	reserved

	

sidx# entries referenced_size subsegment_duration

i-th e0 Si,media Di

e1 Si+1,index




i

j
jsegment

N

ij
j DDD

01

(i+1)th e0 Si+1,media Di+1

e1 Si+2,index






1

02

i

j
jsegment

N

ij
j DDD

Table K. 3: Daisy-chained segment index

K.2.4 Combination hierarchical and daisy-chain

This	example	shows	hierarchical	and	daisy‐chained	segment	index	(Figure	K.	4),	which	is	combination	
of	A.2.3	and	A.2.4.	The	value	of	referenced_size	and	subsegment_duration	of	each	entry	are	
calculated	as	Table	K.	4.	

	

Figure K. 4: Combined segment index

	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 231

	

sidx# entries referenced_size subsegment_duration

i-th e0 Si+1,index + Sj,media + Sj+1,media Dj + Dj+1

e1 Si+2,index + Sj+2,media + Sj+3,media Dj+2 + Dj+3

e2 Si+3,index + Sj+4,media






3

04

j

k
ksegment

N

jk
k DDD

(i+1)th e0 Sj,media Dj

e1 Sj+1,media Dj+1

(i+2)th e0 Sj+2,media Dj+2

e1 Sj+3,media Dj+3

(i+3)th e0 Sj+4,media Dj+4

e1 Si+4,index






4

05

j

k
ksegment

N

jk
k DDD

Table K. 4: Combined segment index

ISO/IEC 14496-12:2015(E)

232	 ©	ISO/IEC	2015	–	All	rights	reserved

	

Bibliography

[1] The	QuickTime	file	format	specification,	in	PDF:	
<http://developer.apple.com/documentation/QuickTime/QTFF/qtff.pdf>	

[2] 3GPP	TS	26.244,	3GPP	file	format	(3GP)	

[3] 3GPP	TS	26.346,	Multimedia	Broadcast/Multicast	Service	(MBMS);	Protocols	and	codecs	

[4] OMA	BCAST_Distribution‐V1_0:	File	and	Stream	Distribution	for	Mobile	Broadcast	Services	

[5] IETF	RFC	3926,	FLUTE	‐	File	Delivery	over	Unidirectional	Transport,	October	2004	

[6] IETF	RFC	3450,	Asynchronous	Layered	Coding	(ALC)	Protocol	Instantiation,	December	2002	

[7] IETF	RFC	3451,	Layered	Coding	Transport	(LCT)	Building	Block,	December	2002	

[8] IETF	RFC	3452,	Forward	Error	Correction	(FEC)	Building	Block,	December	2002	

[9] IETF	RFC	3695,	Compact	Forward	Error	Correction	(FEC)	Schemes,	February	2004	

[10] IETF	RFC	1864,	The	Content‐MD5	Header	Field,	October	1995	

[11] IETF	RFC	2616,	Hypertext	Transfer	Protocol	—	HTTP/1.1,	June	1999	

[12] IETF	RFC	3061,	A	URN	Namespace	of	Object	Identifiers,	February	2001	

[13] IETF	RFC	3550,	RTP:	A	Transport	Protocol	for	Real‐Time	Applications,	July	2003	

[14] IETF	RFC	3551,	RTP	Profile	for	Audio	and	Video	Conferences	with	Minimal	Control,	July	2003	

[15] IETF	RFC	4122,	A	Universally	Unique	IDentifier	(UUID)	URN	Namespace,	July	2005	

[16] IETF	 RFC	 4771,	 Integrity	 Transform	 Carrying	 Roll‐Over	 Counter	 for	 the	 Secure	 Real‐time	
Transport	Protocol	(SRTP),	January	2007	

[17] IETF	RFC	5119,	A	Uniform	Resource	Name	(URN)	Namespace	 for	 the	Society	of	Motion	Picture	
and	Television	Engineers	(SMPTE),	February	2008	

[18] ICC.1:2001‐04,	File	format	for	color	profiles,	International	Color	Consortium

[19] SMPTE	 RP	 177,	 Derivation	 of	 Basic	 Television	 Color	 Equations;	 Society	 of	 Motion	 Picture	 and	
Television	Engineers	(SMPTE),	1993	

[20] ISO/IEC	13818‐1,	 Information technology — Generic coding of moving pictures and associated
audio information — Systems	

ISO/IEC 14496-12:2015(E)

©	ISO/IEC	2015	–	All	rights	reserved 233

	

[21] ISO/IEC	14496‐15,	 Information technology — Coding of audio-visual objects — Advanced Video
Coding (AVC) file format	

[22] IETF	RFC	5117,	RTP Topologies,	WESTERLUND,	M.	et	al.,	January	2008.	

	

ISO/IEC 14496-12:2015(E)

ICS 35.040

Price	based	on	233	pages	

©	ISO/IEC	2015	–	All	rights	reserved	

	

	

